Anleitung: Ein Modell des Coronavirus in 3D

Juli 31, 2020
Ferdinand Kirsten

Das Coronavirus unkompliziert selbst drucken und zusammenbauen – wir haben ein 3D-Modell dafür entworfen!
Abhängig vom User und dem jeweiligen 3D-Drucker sind die Details natürlich unterschiedlich. Die Methoden, die wir angewandt habenkönnen aber als Anhaltspunkt dienen. Nutzer ohne eigenen 3D-Drucker können die STL-Daten aber auch dafür verwenden, den Druck bei einem externen Dienstleister zu beauftragen. Wir hoffen, mit diesem Projekt nicht nur private Nutzer zu erreichen, sondern auch bessere Möglichkeiten für die Lehre und das öffentliche Verständis des Virus zu schaffen.

Unser Entwurf basiert auf aktuellesten wissenschaftlichen Erkenntnissen bezüglich der Proteinstrukutur und Größenverhältnisse. Mehr dazu hier.

Mit dem ausgedruckten und zusammengebauten Modell bekommt man eine Vorstellung, wie das Virion aussehen würde, wenn es um eine Million vergrößert wäre (1 mm des Models stellt 1 nm (10 Å) dar). Die RNA, das Erbgut des Virus, wäre dann zehn Meter lang und einen Millimeter dick.

Zusätzlich haben wir ein Modell eines menschlichen Antikörpers im selben Maßstab entworfen, welches zusätzlich zu den Strukuren des Virions gedruckt und je nach Wunsch an das Spike-Protein angehägt werden kann. Um das Drucken, Bemalen und Zusammenbauen zu erleichtern, haben wir die Virusstruktur in vier einzelne Komponenten zerlegt:

Anleitung: Ein Modell des Coronavirus in 3D 1

Bis jetzt wurden die Strukturen erfolgreich auf verschiedenen Schmelzschicht-Druckern (FDM), einem Rostok MAX v2 und einem Prusa I3 MK3 Drucker getestet. Mit anderen Methoden, wie Stereolithographie, wäre eine noch höhere Qualität durchaus möglich.

Jeder Teil ist im STL-Format verfügbar und sollte mit jeder geeigneten Slicer-Software druckbar sein.

Beim Zusammenbauen und Bemalen des fertigen Drucks geht man am besten nach eigenem Gutdünken vor. Die exakten Details unterschieden sich schließlich je nach Equipment und nach den Einstellungen.
Wir zeigen hier trotzdem unseren Aufbau in knapper Zusammenfassung.

Druck der Komponenten:

Der erste Schritt ist das Drucken der einzelnen Bestandteile. Die Virion-Kugel ist schnell gedruckt, da durch die flache Oberfläche keine weiteren Träger oder Verbindungen benötigt werden.
Dieser Teil kann mit einem Minimum an Füllung und Trägern gedruckt werden, aus Gründen der Stabilität empfehlen wir jedoch eine Füllung von mindestens 10%.

Die anderen Teile (Spikeproteine und Antikörper) stellen hierbei eine größere Herausforderung dar.
Das Spikeprotein muss für das fertige Model mindestens 95mal gedruckt werden. Hierzu können entweder individuelle Einstellungen genutzt oder die 25x STL-Datei 4mal gedruckt werden.
Es ist empfehlenswert das Spike-Protein mit dem Kopf in Richtung Druckbett zu drucken. Das erhöht die Stabilität und benötigt weniger Verbindungen und Vernetzungen zwischen den einzelnen Trägern.
Diese müssten sonst mit Fingerspritzengefühl vom sensiblen Stamm der Spikes entfernt werden. Wie viele Träger zusätzlich hinzugefügt werden, kann je nach Nutzer und der jeweiligen Situation entschieden werden.

Ein Dual-Extruder-Drucker ist für das Herstellen der Spikes ideal, da die stabilisierenden Verbindungen zwischen den Spikes aus einem wasserlöslichen Plastik gedruckt und somit einfach zu entfernen sind. Auf jeden Fall erzeugt ein individueller Druck der Spikes oder zumindest eine geringere Anzahl pro Block ein besseres Ergebnis. Die Verarbeitung dieser Spikes ist dann einfacher, auch wenn der Druck zeitaufwändiger wird. Generell muss ein guter Kompromiss zwischen der Druckgenauigkeit, der Geschwindigkeit und dem Aufwand beim Aufarbeiten der Modelle gefunden werden.

Die Details dieses Prozesses hängen vor allem von der Art des Druckers, dem Aufbau und der Drucktechnik ab. Wir nutzten die bekannteste Technik: Schmelzschicht-Druck (FDM), als Plastik wurde Polylactide (PLA) verwendet, was die folgende Aufreinigung erleichterte.

Aufarbeitung

Um die Objekte möglichst sauber zusammensetzen und bemalen zu können, ist eine Aufarbeitung der Einzelteile notwendig. Die Stabilisierungsstücke können mit einer Zange entfernt werden, während kleinere Artefakte einen Abschliff benötigen. Auch ein Zahnstocher hat sich als hilfreich erwiesen.

Links die Virion- und Spike-Protein- Oberflächen nach dem Druck, mit erkennbaren Artefakten und Plastik-Fadenbildung . Auf der rechten Seite das mit Ethylacetat behandelte Virion mit einer glatten Oberfläche. Bilder von Ferdinand Kirsten, Matt Reeves.
Links die Virion- und Spike-Protein- Oberflächen nach dem Druck, mit erkennbaren Artefakten und Plastik-Fadenbildung . Auf der rechten Seite das mit Ethylacetat behandelte Virion mit einer glatten Oberfläche. Bilder von Ferdinand Kirsten, Matt Reeves.

Für PLA erwies sich Ethylacetat als die beste Reinigungsmethode um Oberflächen zu glätten und Überbleibsel der Träger zu entfernen. Das Ethylacetat löst das Plastik auf und zerstört somit kleine Unebenheiten auf den Oberflächen, wenn es bedacht angewendet wird. Hierbei kann unterschiedlich vorgegangen werden, wobei die schonendste Methode das Aussetzen in eine Ethylacetat-Dampf Umgebung in einem geschlossenen Gefäß ist. Es entsteht eine glatte Oberfläche mit genauen Details, der Prozess nimmt jedoch oft viele Stunden oder sogar einige Tage in Anspruch.

Die schnellere Methode , die ebenfalls zufriedenstellende Resultate liefert, ist das Eintunken der Objekte in Ethylacetat für 10-30 Sekunden. Anschließend werden sie abgetupft und zum Trocknen ausgelegt. Oft ist ein zweiter Reinigungsgang nötig. Für die größeren Virusteile kann es helfen ein Tuch, welches mit Ethylacetat getränkt ist, bis zum gewünschten Ergebnis über die Oberfläche zu reiben. Mit dieser Methode lassen sich die beiden Virionhälften auch hervorragend zusammenkleben. Eine kleine Menge Ethylacetat wird auf jeder Fläche der Hälften verteilt und die Hälften zusammengedrückt, bis sie zu einem einzigen Stück verschmolzen sind. Auch die Naht kann dann mit einem Ethylacetat-Tuch gut geglättet werden. Hierfür stellt Aceton-freier Nagellackentferner eine ausgezeichnete, frei käufliche Alternative dar, die die gleichen Ergebnisse erzielen dürfte. Bei der Handhabung dieser Chemikalien sollte immer geeignete Schutzausrüstung getragen werden ( Schutzbrille, Handschuhe etc.).

Spike-Proteine Frisch nach dem Druck (links) und nach der Aufarbeitung mit Ethylacetat (rechts), Bild von Ferdinand Kirsten.
Spike-Proteine frisch nach dem Druck (links) und nach der Aufarbeitung mit Ethylacetat (rechts), Bild von Ferdinand Kirsten.

Übrigens: Aceton erzielt für das andere häufig genutzte Druckmaterial, Acrylnitril-Butadien-Styrol (ABS) die gleiche Wirkung wie Ethylacetat für PLA.

Bemalen und Zusammensetzen

Wie beim Druck, sind auch das Bemalen und die jeweiligen Malmethoden dem Nutzer individuell überlassen. Hier zeigen wir die Variante des Würzburger Modells, bei der wir versucht haben, der Illustration von Thomas Splettstösser möglichst treu zu bleiben.

Am Computer erstelltes Bild des Virusses von Thomas Splettstoesser (links) und das ferige 3D-Modell des Thorn Labs (rechts).
Am Computer erstelltes Bild des Virusses von Thomas Splettstoesser (links) und das ferige 3D-Modell des Thorn Labs (rechts).

Die Einzelteile wurden zu Beginn mit einem Primer überzogen, um die Farbe besser an das Modell zu binden. Außerdem wirkt dieser wie eine gleichmäßige Grundierung. Beim Auftragen des Primers und der Nutzung einer Airbrush muss auf die Sicherheit geachtet werden, um das Einatmen der schädlichen Substanzen zu vermeiden. Ein gut belüfteter Raum, ein Abzug und eine Zirkulation weg vom Körper sind zu empfehlen. Das Tragen von Handschuhen, einer Schutzbrille und einer Maske sollte für zusätzlichen Schutz sorgen.

In unserem Fall wurde das Modell hauptsächlich mit einer Airbrush bemalt und wir empfehlen diese Methode für die kleinen Oberflächendetails und komplexen Strukturen. Natürlich können auch alle Teile mit dem Pinsel angemalt werden, dies ist jedoch deutlich zeitaufwendiger und erfordert genaueres Arbeiten. Alle genutzen Farben, Verdünner, Primer und Lack sind von Citadel-Painting. Hier eine Liste der genutzten Farben und Amterisleien die für unser Modell verwendet wurden:

  • Grün: “Moot green”
  • Gelb: “Yriel Yellow”
  • Grau: “Dawnstone”
  • Braun: “Baneblade Brown”
  • Dunkelbraun: “Doombull Brown”
  • Hellblau (Aqua): “Gauss Blaster Green”
  • Türkis: “Kabalite Green”
Die Spike-Proteine Sortiert nach Farben (links oben), nur mit Grundierung (links unten) und nach dem Hervorheben mit Limettengrün (rechts). Bild von Kristopher Nolte.
Die Spike-Proteine Sortiert nach Farben (links oben), nur mit Grundierung (links unten) und nach dem Hervorheben mit Limettengrün (rechts). Bild von Kristopher Nolte.

Um den Effekt einer natürlichen Lichtquelle zu erzeugen wurden die Spikes in vier Gruppen unterteilt und unterschiedlich hell bemalt.
Wenn das Modell nicht für die feste Ausstellung auf einer Halterung oder Ähnlichem geplant ist, ist dieser Schritt nicht notwendig. Jedes Spike-Protein wurde mit einem helleren Limettengrün hervorgehoben (Highlighting), um einen stärkeren Kontrast zu erzeugen und die Oberfläche besser zu differenzieren. Anschließend wurde das Highlighting mit einem "Dry-brush" der hellblauen (Aqua) Farbe vollendet.

Virion-Kugel (oder auch liebevoll Kartoffel genannt) mit hervorgehobenen Hüllenproteinen (links) und nach der Grundierung (rechts). Bild von Kristopher Nolte.
Virion-Kugel (oder auch liebevoll Kartoffel genannt) mit hervorgehobenen Hüllenproteinen (links) und nach der Grundierung (rechts). Bild von Kristopher Nolte.

Nachdem das Virusmodell samt Spikes bemalt war, wurde die Farbe mit Glanzlack und einem matten Finish versiegelt. Dieser Schritt ist ebenfalls optional, aber zum Schutz gegen Abnutzung der Farben bei häufiger Handhabung des Modells zu empfehlen.

Nach all diesen Schritten kommt es endlich zum langersehnten Zusammensetzen der Einzelteile. Falls die Spike Proteine verschiedene Highlights bekommen haben, ist darauf zu achten, sich auf eine „Lichtquelle“ festzulegen und die Spikes dementsprechend anzuordnen und am Modell zu befestigen (Auf einem Ständer: Unten dunkler, nach oben heller). Um die Spikes an ihrer Position zu befestigen haben wir normalen Modellbaukleber verwendet. Starker Bastel-Kleber oder Ethylacetat können hierfür ebenfalls benutzt werden, sowie kleine Magnete für besondere Tüftlerinnen und Tüftler. Da unser Modell auf einer Halterung präsentiert werden soll, wurde hierfür ein Loch an der Unterseite des Modells freigelassen, in dem dann die Stange befestigt werden kann.

Zusammensetzen des Modells mit Kleber. Die Spike-Proteine werden in den dafür vorgesehenen Löchern befestigt. Bild von Kristopher Nolte.
Zusammensetzen des Modells mit Kleber. Die Spike-Proteine werden in den dafür vorgesehenen Löchern befestigt. Bild von Kristopher Nolte.

Hoffentlich hat euch unser kleines Abenteuer gefallen und inspiriert, euch an euer eigenes 3D-Coronamodell zu wagen. Die beschriebenen Arbeitsschritte haben insgesamt etwas mehr als eine Woche in Anspruch genommen. Das Drucken dauert etwa einen Tag.  Aufreinigung und Verfeinerung benötigten mehr als zwei Tage und das Bemalen des Modells ein ganzes Wochenende.

Die Dateien sind öffentlich auf Thingiverse verfügbar und das Modell ist lizensiert als Creative Commons BY-NC: Frei Verwendung und Veränderung für nicht-kommerzielle Zwecke und unter Nennung der "Coronavirus Structural Task Force" als Urheber.

3D-Druck Illustration von Thomas Splettstoesser (links) im Vergleich mit dem Modell von Dale Tonrud aus Oregon (mitte) und dem Thorn Lab aus Würzburg (rechts).
3D-Druck Illustration von Thomas Splettstösser (links) im Vergleich mit dem Modell von Dale Tonrud aus Oregon (mitte) und dem Thorn Lab aus Würzburg (rechts).

Wie bei jedem 3D-Modell, gibt es weit mehr als einen Weg, diese Aufgabe anzugehen und zu vollenden. Wir freuen uns, darauf, Eure Modelle zu sehen und mit Euch über Herangehensweisen und Techniken zu diskutieren - hier in den Kommentaren, auf Thingiverse oder Twitter!

Die Autoren:

Wir möchten hervorheben, dass dieser Artikel eine Zusammenarbeit mehrerer Leute ist:

Dale Tonrud und Thomas Splettstösser haben zusammen die STL Dateien für das 3D Modell erstellt und verfeinert. dale hatte die Idee, ein Modell zu drucken und diese wurde dann von Andrea Thorn aufgegriffen. Thomas und Dale sorgten dann dafür, das Modell möglichst realistisch und gleichzeitig gut für Handhabung und Druck in Einzelteilen zu gestalten. Dale druckte das erste Design des Modells aus.
Matt Reeves war für die Optimierung und den Druck des Würzburger Modells zuständig. Er fand heraus, wie das Modell am besten nachbearbeitet wird und trug zusammen mit dem Rest des Teams zur Verbessung des Modells bei.
Kristopher Nolte arbeitete zusammen mit Ferdinand Kirsten das gedruckte Modell auf und reinigte es. Kristopher war zudem für die filigrane Arbeit des Bemalens und Zusammensetzens des fertigen Virions verantwortlich.

Dieser Artikel ist übersetzt von Ferdinand Kirsten, Pairoh Seeliger und Kristopher Nolte, nach dem originalen Artikel in Englisch von Kristopher Nolte, Dale Tonrud und Matt Reeves.

Corinna, der Corona-Kaktus

@
Corinna ist das Maskottchen der Task Force und hilft bei allen pflanzenbezogenen Aufgabenstellungen. Frühere Erfahrungen konnte sie schon im Baumarkt sammeln, und auch wenn sie manchmal etwas kratzbürstig sein kann, liebt sie es doch zu kuscheln und in der Sonne zu liegen
Mehr über diesen Autor

Helen Ginn

Senior Research Scientist @ Diamond Light Source, Oxfordshire, UK
Dr. Helen Ginn ist leitende Wissenschaftlerin am Diamond Light Source Institut in Großbritannien und Methodenentwicklerin für die Strukturbiologie. Derzeit arbeitet sie an der Darstellung von Proteineinheiten (Representation of Protein Entities, RoPE) für Strukturbiologen. Sie hat die Software Vagabond zur torsionswinkelgesteuerten Modellverfeinerung und cluster4x zur Gruppierung von Datensätzen entwickelt. Zu ihren Forschungsinteressen gehört auch die Kartierung […]
Mehr über diesen Autor

Nick Pearce

Assistant Professor @ SciLifeLab DDLS Fellow
Nicholas Pearce machte 2012 seinen Bachelor in Physik an der Universität Oxford und promovierte 2016 in Systems Approaches to Biomedical Sciences. Im Jahr 2017 zog er nach Utrecht in den Niederlanden, um mit Piet Gros zu arbeiten. Dort erhielt er ein EMBO-Langzeitstipendium und arbeitete an der Analyse von Unordnung in makromolekularen Strukturen. Anschließend erhielt er […]
Mehr über diesen Autor

Mathias Schmidt

Student der Molecular Life Sciences (M.Sc.) @ Universität Hamburg
Mathias macht momentan seinen Master in Molecular Life Sciences an der Universität Hamburg und ist seit März 2022 Hilfswissenschaftler in der Corona Structural Taskforce. Dort beschäftigt er sich mit der Frage nach dem Ursprung von SARS-CoV-2. Sein Forschungsschwerpunkt im Studium liegt auf der Entwicklung von synthetischen, molekularen Mechanismen zur Regulierung von Genen in pflanzlichen wie […]
Mehr über diesen Autor

David Briggs

Principal Laboratory Research Scientist @ Francis Crick Institute in London, UK
David Briggs ist Principal Laboratory Research Scientist im Labor für Signal- und Strukturbiologie am Francis Crick Institute in London, UK. Als ausgebildeter Kristallograph konzentriert sich seine Arbeit auf die biophysikalische und strukturelle Charakterisierung menschlicher extrazellulärer Proteine, die an der Synapse beteiligt sind und wichtige Auswirkungen auf psychiatrische und neurodegenerative Störungen haben. Er ist auch an […]
Mehr über diesen Autor

Lisa Schmidt

Webentwicklerin und Illustratorin @ Mullana
Lisa Schmidt ist freiberufliche Illustratorin und studierte Multimedia und Kommunikation (BA) in Ansbach, Deutschland. Ihre Arbeit konzentriert sich auf die Visualisierung von Wissenschaft und Technik. Sie ist als Mediengestalterin bei der Coronavirus Structural Task Force tätig, wo sie Webdesign, 3D-Rendering für wissenschaftliche Illustrationen und Öffentlichkeitsarbeit betreibt.
Mehr über diesen Autor

Philip Wehling

Student der Nanowissenschaften (M.Sc.) @ Institut für Nanostruktur und Festkörperphysik, Universität Hamburg
Philip begeistert sich schon lange für biologische Prozesse und verfügt über ein analytisches Weltverständnis. Nachdem er lange Zeit als Krankenpfleger in verschiedenen Bereichen gearbeitet hat, studierte er zunächst Mathematik und schließlich Nanowissenschaften. Im Rahmen einer Ringvorlesung zur Vorbereitung einer Bachelorarbeit kam er mit der Proteinkristallographie in Berührung und beginnt nun, sich als Mitglied des Thorn […]
Mehr über diesen Autor

Binisha Karki

Wissenschaftliche Mitarbeiterin @ BioNTech SE
Binisha ist als wissenschaftliche Mitarbeiterin bei BioNTech angestellt und arbeitet an der Entwicklung von Impfstoffen gegen COVID-19 sowie Krebsimmuntherapien. Sie beendete ihr Studium der Molekularbiologie an der Southeastern Louisiana University im Mai 2019. Anschließend arbeitete sie als Forschungstechnikerin im Chodera-Lab, wo sie biophysikalische Messungen an Modellen von Protein-Liganden-Systeme für computerchemische Benchmarks durchführte.
Mehr über diesen Autor

Hauke Hillen

Juniorprofessor an der Universitätsmedizin Göttingen & Gruppenleiter am MPI für Biophysikalische Chemie @ Universitätsmedizin Göttingen
Hauke ist Biochemiker und Strukturbiologe. Mit seinem Forschungsteam untersucht er mittels Röntgenkristallografie und Kryo-Elektronenmikroskopie die Struktur und Funktion von molekularen Maschinen, die für die Genexpression in eukaryotischen Zellen verantwortlich sind. Er interessiert sich dabei besonders dafür wie genetisches Material außerhalb des Zellkerns exprimiert wird, zum Beispiel in menschlichen Mitochondrien oder durch Viren im Zytoplasma.
Mehr über diesen Autor

AG Richardson

AG Richardson @ Duke University, Durham, North Carolina, USA
Das Langzeitziel der AG Richardson ist ein tieferes Verständnis der dreidimensionalen Strukturen von Proteinen und RNA zu erhalten, einschließlich ihrer Beschreibung, Einflussfaktoren, Faltung, Evolution und Regulation. Hierbei verwenden die Richardsons strukturelle Bioinformatik, makromolekulare Kristallographie, Molekülgrafik, Strukturanalyse und Methodenentwicklung, insbesondere bei der Verbesserung der Genauigkeit von molekularen Strukturen. Im Projekt arbeiten und bewerten sie die Geometrie […]
Mehr über diesen Autor

Holger Theymann

Agile-Leadership-Coach @ mehr-Freu.de GmbH
Holger hält Webseiten am Laufen. Er zaubert Daten aus wissenschaftlichen Datenbanken in hübsche Tabellen. Er hat außerdem ein Auge darauf, dass die Seiten schnell, sicher und zuverlässig ist. Seine Erfahrung als Software-Entwickler, Software-Architekt, Agiler Projektmanager und Coach halfen der Task Force, dass der ganze Prozess rund lief. Außerdem zeigt er den Mitgliedern der Task Force, […]
Mehr über diesen Autor

Ezika Joshua Onyeka

Public Health M.Sc. Student @ Hamburg University
Joshua arbeitet als studentische Hilfskraft im Thorn Lab. Er hat einen Bachelor-Abschluss in Public Health und ist derzeit an der Hochschule für Angewandte Wissenschaften Hamburg (HAW) für seinen MPH eingeschrieben. Er hat bei der Umsetzung einiger Impfprogramme geholfen, um die Impfrate zu verbessern und bei der Ausbildung von medizinischem Personal in Hinblick auf die Impfstrategie. […]
Mehr über diesen Autor

Florens Fischer

Student der Biologe (M.Sc.) @ Rudolf-Virchow-Zentrum, Universität Würzburg
Florens studiert Biologie (M.Sc.) und unterstützte als Hilfswissenschaftler die Task Force. Sein Fokus lag dabei in der Bioinformatik und er unterstützt die Arbeiten wie Automatisierung von Programmcode und Strukturierung von Big Data mit Hilfe von Machine Learning. Außerdem unterstützte er das Team in anderen Bereichen, wie zum Beispiel in der wissenschaftlichen Recherche.
Mehr über diesen Autor

Katharina Hoffmann

Studentin der Molekularbiologie (M.Sc.) @ Institut für Nanostruktur und Festkörperphysik, Universität Hamburg
Katharina hat im AK Thorn als Hiwi gearbeitet. Normalerweise studiert sie im Master Molekularbiologie an der Uni Hamburg. In ihrer durch Corona auf Eis gelegten Masterarbeit beschäftigt sie sich mit der Unterbrechung bakterieller Kommunikation. Seit dem Lockdown treibt sie sich in Datenbanken rum und analysiert Sequenzen. Sie hätte nie gedacht, so nah an die Strukturbiochemie […]
Mehr über diesen Autor

Nicole Dörfel

Mediengestalterin @
Nicole Dörfel sorgt dafür, dass wir und unsere Arbeit gut aussehen! Sie ist die Illustratorin, Mediengestalterin und künstlerische Seele der Task Force. Ihren Pinsel schwingt sie sowohl im Printbereich als auch digital – stets mit der Spezialisierung auf Mediendesign. Für die Task Force ist Nicky vor allem zuständig für Grafikdesign, sämtliche Werbematerialien (für die Öffentlichkeitsarbeit) […]
Mehr über diesen Autor

Pairoh Seeliger

Verwaltungsassistentin @ Institut für Nanostruktur und Festkörperphysik, Universität Hamburg
Pairoh Seeliger entlastet als die Assistentin der Task Force die Wissenschaftler. Sie kümmert sich um Medienanfragen, Sprachprobleme und logistische Aufgaben aller Art. Außerdem bewertet sie die Verständlichkeit und Sprache unserer deutschen Öffentlichkeitsarbeit. Sie bezeichnet sich selbst als "Mädchen für Alles mit Germanistikstudium und kaufmännischer Ausbildung. Spezialität: Pfefferminztee".
Mehr über diesen Autor

Oliver Kippes

Student der Biochemie (B.Sc.) @ Rudolf-Virchow-Zentrum, Universität Würzburg
Oliver studiert Biochemie und hat vor seinem Studium eine Ausbildung als Fachinformatiker absolviert. Mithilfe des kombinierten Wissens seines Studiums und seiner Ausbildung hilft er bei der Verwaltung der Strukturdatenbank, programmiert Anwendungen für diese und unterstützt das Team bei Literaturrecherchen. Die Strukturbiologie war für Oliver trotz seines Studiums ein noch neues Themenfeld, das er mit großer […]
Mehr über diesen Autor

Luise Kandler

Studentin der Biochemie (B.Sc.) @ Rudolf-Virchow Zentrum, Julius-Maximilians-Universität Würzburg
Luise studiert Biochemie und ist der Task Force während des ersten Corona-Lockdowns beigetreten. Ihre Bachelorarbeit mit Fokus auf Computer anwendung hat sie im AK Thorn geschrieben. In der Task Force nutzt sie ihr biochemisches Wissen für Literaturrecherchen und versucht, die besten Visualisierungen von Molekülen des Coronavirus zu finden. Nichtsdestotrotz lernt Luise nebenbei auch Python und […]
Mehr über diesen Autor

Ferdinand Kirsten

Student der Biochemie (B.Sc.) @ Rudolf-Virchow-Zentrum, Universität Würzburg
Ferdinand hat am AK Thorn seine Bachelorarbeit über Lösungsmittelaustausch und Interaktion in makromolekularen Kristallen angefertigt. Als Novize in der Welt der Kristallographie und der Strukturaufklärung hilft er, wo er kann, wobei sein Hauptaugenmerk auf Literatur- und Genom-Recherchen sowie der Strukturverfeinerung liegt. Auch wenn er sich eigentlich mehr als „Ich will aber was anfassen und im […]
Mehr über diesen Autor

Kristopher Nolte

Student der Biochemie (B.Sc.) @ Rudolf-Virchow Zentrum, Julius-Maximilians-Universität Würzburg
Kristopher trat dem AK Thorn im Rahmen seiner Bachelorarbeit bei. In dieser Arbeit hat er AUSPEX mit Hilfe maschinellen Lernens verfeinert. Da aber die Coronakrise unser aller Leben zum Stillstand gebracht hat, trägt er nun zur Task Force bei, indem er seine Kenntnisse der Bioinformatik und Programmierung nutzt, um alle Coronavirus-relevanten Daten aus der PDB […]
Mehr über diesen Autor

Toyin Akinselure

Studentin der Nanowissenschaften (M.Sc.) @ Institut für Nanostruktur und Festkörperphysik, Universität Hamburg
Toyin ist Mikrobiologin und derzeit Masterstudentin der Nanowissenschaften mit den Schwerpunkten Nanobiologie und Nanochemie. Sie interessiert sich für wissenschaftliche Forschung, insbesondere für Proteinchemie und Wirkstoffentwicklung. Im letzten Herbst und Winter hat sie ein Praktikum bei zwei Forschungsprojekten gemacht, eines in der Wirkstoffforschung und das andere in der Proteinstrukturaufklärung. Sie fand beide spannend und hofft, ihr […]
Mehr über diesen Autor

Erik Nebelung

Student der Nanowissenschaften (M.Sc.) @ Institut für Nanostruktur und Festkörperphysik, Universität Hamburg
Erik studiert Nanowissenschaften mit Fokus auf biochemischen Anwendungen und Methoden. Zwischen August 2020 und Januar 2021 führte er im iNano Institute in Aarhus sein Studium fort, inzwischen hat er – zurück in Hamburg – seine Masterarbeit begonnen. In seiner Bachelorarbeit kam er bereits in den Genuss, Proteine zu kristallisieren, was seine Faszination für Biomoleküle nur […]
Mehr über diesen Autor

Lea von Soosten

Studentin der Physik (M.Sc.) @ Institut für Nanostruktur und Festkörperphysik, Universität Hamburg
Lea studiert Physik im Master und interessiert sich für alles, was mit Biologie zu tun hat. Obwohl sie aus einem anderen Bereich kommt, ist sie dem Team beigetreten, um ihr Wissen über Biochemie zu erweitern und der Task Force mit Schwerpunkt auf Literaturrecherche zu helfen. Außerdem liebt sie es, zu zeichnen!
Mehr über diesen Autor

Sabrina Stäb

Studentin der Biotechnologie (M.Sc.) @ Institut für Nanostruktur und Festkörperphysik, Universität Hamburg
Sabrina studiert Biochemie und arbeitet als Hilfswissenschaftlerin im AK Thorn und in der CSTF. Durch ihre Bachelorarbeit zur „Kristallisation und Strukturlösung von qualitativ hochwertigen Strukturen für MAD-Experimente“ konnte sie reichlich Erfahrung im Bereich Kristallographie sammeln und bringt diese nun im Projekt ein. Wenn sie nicht gerade wegen COVID-19 daheim bleiben muss, verbringt sie ihre Freizeit […]
Mehr über diesen Autor

Alexander Matthew Payne

Doktorand der Chemischen Biologie @ Chodera Lab, Memorial Sloan Kettering Center for Cancer Research, New York, USA
Alex ist ein Doktorand, der verstehen möchte, wie sich Proteine bewegen. Er arbeitet seit kurzem in den Laboren von John Chodera und Richard Hite an einem Projekt zwischen Molekulardynamik und Cryo-EM. Sein Ziel ist es, Konformationsensembles aus Cryo-EM-Daten zu generieren und diese mithilfe von Massive Scale Molecular Dynamics über Folding@home zu simulieren. Er ist auch […]
Mehr über diesen Autor

Maximilian Edich

Doktorand der Bioinformatik @ Institut für Nanostruktur und Festkörperphysik, Universität Hamburg
Max hat seinen Master in Bioinformatik und Genomforschung in Bielefeld absolviert und ist 2021 als Doktorand der CSTF beigetreten. Sein Fokus lag bis dato auf dem molecular modeling und nun beschäftigt er sich mit der sogenannenten R-factor gap. Als Teilnehmer des iGEM Wettbewerbs konnte er bereits 2017 erleben, was es heißt Teil eines jungen und […]
Mehr über diesen Autor

Agnel Praveen Joseph

Computerwissenschaftler @ Science and Technology Facilities Council, UK
Dr. Agnel Praveen ist Methodenentwickler im CCP-EM Team des Science and Technology Facilities Councils des Vereinigten Königreichs (STFC UK). Sein Hauptaugenmerk liegt auf verschiedenen Herangehensweisen, um atomare Cryo-EM-Modelle und Rekonstruktionsdichten zu interpretieren und zu bewerten. Ebenso gehören computerbasierte Methoden zur Interpretation von Cryo-ET-Daten zu seinem Abeitsfeld. Zusammen mit fünf anderen Gruppen in Großbritannien arbeitet er […]
Mehr über diesen Autor

Dale Tronrud

Freier Wissenschaftler @
Dr. Dale Tronrud löst Proteinkristallstrukturen und entwickelt Methoden und Software zur Optimierung makromolekularer Modelle gegen Röntgendaten und chemisches Vorwissen. Seine Interessen umfassen Enzym-Inhibitor-Komplexe und Photosyntheseproteine, mit einem Schwerpunkt auf dem Fenna-Matthews-Olson Protein. Darüberhinaus ist er auch an der Validierung und Korrektur vieler PDB Modelle beteiligt gewesen. Bei all diesen Projekten ist es essenziell, die richtige […]
Mehr über diesen Autor

Sam Horrell

Beamline-Wissenschaftler @ Diamond Light Source, Oxfordshire, Großbritannien
Dr. Sam Horrell ist Struktubiologe in der Methodenentwicklung am Teilchenbeschleuniger Diamond Light Source, insbesondere Methoden, um die Funktion von Enzymen mit Strukturfilmen besser aufklären zu können. Im Projekt arbeitet sich Sam durch die deponierten SARS-CoV und SARS-CoV-2-Strukturen, um das bestmögliche Modell für zukünftige Arzneimittelentwicklung zu finden. Er kommuniziert gerne über seine und andere Wissenschaft und […]
Mehr über diesen Autor

Cameron Fyfe

Postdoc @ Micalis Institute, INRAE, Paris, France
Cameron ist ein Strukturbiologe, der sich bisher ausgiebig mit Proteinen aus Mikroorganismen beschäftigt hat. Er hat langjährige Erfahrung in der pharmazeutischen Industrie und der strukturbiologischen Forschung. In der Task Force möchte er seine Fähigkeiten zur Verbesserung bestehender Modelle für die Medikamentenentwicklung einsetzen. Derzeit forscht er am INRAE an radikalen SAM-Enzymen. Wenn er nicht im Labor […]
Mehr über diesen Autor

Tristan Croll

Postdoc @ Cambridge Institute for Medical Research, University of Cambridge
Dr. Tristan Croll ist Spezialist für die Modellierung atomarer Strukturen in schlecht aufgelösten kristallographischen und Kryo-EM-Dichtekarten und der Entwickler des Modellbauprogramms ISOLDE. Sein Hauptaugenmerk liegt auf der Korrektur der verschiedenen Fehler in der Molekülgeometrie oder bei inkorrekter Dichteinterpretation, die in schlecht aufgelösten Teilen der Dichte vorkommen, mit dem Ziel, den Modellbau bei 3 Angström auf […]
Mehr über diesen Autor

Gianluca Santoni

Forscher für Daten in der seriellen Kristallographie @ European Synchrotron Radiation Facility, Grenoble, Frankreich
Dr. Gianluca Santoni ist Experte für proteinkristallographische Datensammlung und -analyse. Nach seiner Doktorarbeit in strukturbasiertem Wirkstoffdesign hat er als Postdoc am Strahlrohr ID23-1 der European Synchrotron Radiation Facility (ESRF) gearbeitet und die SSX-Datenanalysesoftware ccCluster entwickelt. Mittlerweile interessiert er sich für die Optimierung von Messstrategien für die Datensammlung von mehreren Kristallen und ist außerdem der wissenschaftliche […]
Mehr über diesen Autor

Yunyun Gao

Postdoc im AUSPEX-Projekt @ Institut für Nanostruktur & Festkörperphysik, Universität Hamburg
Yunyun Gao ist Methodenentwickler für Analysestrategien für Biomolekül-Daten. Bevor er zur Thorn-Gruppe kam, arbeitete er an SAXS/WAXS von Polymeren und Proteinen. Er will Datenanalysen objektiver und zuverlässiger  machen. Yunyun erweitert zur Zeit die Funktionalität von AUSPEX. In der Coronavirus Structural Taskforce managt er die Datenbank und alles, was mit AUSPEX zu tun hat.
Mehr über diesen Autor

Johannes Kaub

Wissenschaftlicher Koordinator @ Institut für Nanostruktur & Festkörperphysik, Universität Hamburg
Johannes Kaub hat Chemie, Schwerpunkt Physikalische Festkörperchemie, an der RWTH Aachen studiert und war anschließend als wissenschaftlicher Mitarbeiter am Max-Planck-Institut für Struktur und Dynamik der Materie beschäftigt. Die Coronavirus Structural Task Force unterstützt er als wissenschaftlicher Koordinator mithilfe seiner organisatorischen Fähigkeiten und seiner Begabung fürs Lösen von Problemen. Neben der Wissenschaft gilt seine größte Leidenschaft […]
Mehr über diesen Autor

Andrea Thorn

Gruppenleiterin @ Institut für Nanostruktur und Festkörperphysik, Universität Hamburg
Dr. Andrea Thorn ist Spezialistin für die Strukturlösung mit kristallographischen Methoden und Kryo-Elektronenmikroskopie. Sie hat in der Vergangenheit zu Programmen wie SHELX, ANODE und (etwas) PHASER beigetragen. Ihre Arbeitsgruppe entwickelt die Diffraktionsdaten-Analysesoftware AUSPEX, ein neuronales Netzwerk zur Sekundärstrukturannotation in Kryo-EM Dichtekarten (Haruspex) und ermöglicht anderen Wissenschaftlern die Lösung schwieriger Strukturen. Andrea hat eine Leidenschaft für […]
Mehr über diesen Autor

2 comments on “Anleitung: Ein Modell des Coronavirus in 3D”

  1. Wie ich sehe benutzt ihr "closed" Spike Protein. Könnt ihr auch ein "open" rendern das analog dazu paßt ?

    Ach ja, by the way, die Daten auf thingiverse sind teilweise fehlerhaft und müssen erst mühselig repariert werden. Viellicht mal eine reparierte Version uploaden ?

  2. Wow, was für ein tolles Projekt! Vielen Dank.

    Da ihr das Virion sowieso in zwei Teilen erstellt habt wäre es natürlich der absolute Hammer, wenn diese innen hohl und aneinander (z.B.) schraubbar wären; sowie dadurch der gesonderte RNA-Strang im Inneren vorzufinden.

    Ich wäre ebenfalls an der Lösung zur Fragestellung von Thomas interessiert. 🙂

    1. Hallo Daniel, wir arbeiten aktuell an einem neuen Modell, das den dazugekommenen wissenschaftlichen Erkenntnissen entsprechen wird. (z.B. wird das Virion etwas kleiner und die Anzahl der Spikes weniger sein).
      Unser 3D-Druck-Experte tüffelt außerdem an der Möglichkeit einen maßstabsgetreuen RNA-Strang irgendwie ins Innere zu kriegen. Stay tuned - wir arbeiten an Upgrades 🙂 Pairoh

  3. Sehr geehrte Damen und Herren,

    Nach Ihren Anweisungen habe ich nun versucht PLA mit Ethylacetat zu glätten. Es funktioniert nicht, auch beim direkten tauchen bleicht das Modell fest. Auch im Internet finde ich häufig die Anmerkung, das PLA nicht (wie im Gegensatz zu ABS) Lösemittellöslich ist.
    Wo liegt mein Fehler?

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert

cross