Coronavirus
Structural Task Force

Ein kleines Protein mit großer Wirkung: SARS-7a

Das Genom von SARS-CoV-2 codiert für ein langes Polyprotein ORF1a/ ORF1ab (ORF = offener Leserahmen). Es umfasst 16 nicht-strukturelle und vier strukturelle Proteine. Durch Leserasterverschiebungen (Engl: „Frame Shifts“) entstehen zusätzliche ORFs, die für sogenannte akzessorische Proteine codieren. Diese Gruppe von Proteinen steht im Verdacht einen großen Beitrag an der Pathogenese von SARS-CoV-2 zu leisten. Man nimmt an, dass eines dieser Proteine, das akzessorische Protein 7a, durch Induktion von apoptotischen Prozessen in menschlichen Wirtszellen maßgeblich an der Erkrankung Covid-19 beteiligt ist​1​.

Struktur von SARS-7a

Bislang ist es Forschern noch nicht gelungen die vollständige Proteinstruktur und Funktion von SARS-7a des neuen Coronavirus zu entschlüsseln. Das Protein besitzt aber in seiner Sequenz eine 85%ige Übereinstimmung und 95.2%ige Ähnlichkeit mit einem bereits bekannten Protein in SARS-CoV​2​. Somit kann angenommen werden, dass sich beide Proteine in Struktur sowie Funktion ähneln. Aus der Sequenzanalyse von SARS-CoV geht hervor, dass ORF7a für ein Typ I Transmembranprotein mit 122 Aminosäuren codiert​3​. Der N-Terminus umfasst ein Signalpeptid, bestehend aus sieben β-Strängen, die sich zu einem kompakten immunoglobulinartigen β-Sandwich, bestehend aus zwei β-Faltblättern, zusammenlagern (siehe Abbildung 1).  Das erste β-Faltblatt umfasst die β-Stränge A, G, F, C und das zweite die Stränge B, E, D (Abbildung 1, links)​4​.

Abb. 1: Die dreidimensionale Proteinstruktur des akzessorischen Proteins 7a von SARS-CoV‑2 (PDB: 6W37). Links: Die β-Faltblätter BED und AGFC bilden die Ektodomäne des Typ I Transmembranproteins. Rechts: Stabilisierende Disulfidbrücken in der Farbe Cyan an Ober- und Unterseite der β-Faltblattstrukturen. "CC-BY-NC" Sabrina Stäb/ Coronavirus Structural Task Force

Die beiden amphipathischen Faltblätter sind eng aneinander gepackt, wobei die hydrophobe Seite innen liegt. Oberseitig wird die Ektodomaine über die β-Schleifen BC, DE und FG definiert. Die Unterseite bilden die Schleifen AB, CD und EF. Die Stabilisierung des β-Sandwichs erfolgt über zwei Disulfidbrücken. Die erste Disulfidbrücke liegt am unteren Ende der Faltblätter und verknüpft die Aminosäuren Cys8 auf Strang A mit Cys43 auf Strang E. An der Oberseite, auf der BC Schleife, liegt Cys20, welches über die zweite Disulfidbrücke mit dem Cys52 am Ende von Strang F verknüpft ist (siehe Abbildung 1, rechts). Oberhalb des BED-Faltblatts ragt die DE-Schleife aus dem β-Sandwich hervor und bildet mit den β-Strängen C und D eine Höhle. In dem Zentrum dieser hauptsächlich hydrophoben Vertiefung sitzt ein Glu18, das zur negativen Ladung am Boden der Höhle beiträgt. Aufgrund des negativen elektrostatischen Potentials ist es denkbar, dass diese Vertiefung eine potenzielle Interaktionsstelle für Liganden darstellt​4​.

Interaktionspartner von SARS-7a

Experimente mit Zellkulturen zeigen, dass SARS-7a vielfältige biologische Funktionen hat und auf unterschiedlichen Wegen in Zellprozesse eingreifen könnte​5​. Eine mögliche Schlüsselrolle ist die Zellzykluskontrolle. Die Überexpression von SARS-7a in HEK273 Zellen führte zu einer Inhibition des Zellwachstums und zum Zellzyklusarrest in G0/G1 Phase. Dieser Zellzyklusarrest kann die Virusreplikation begünstigen und die durch das Virus induzierte Pathogenität verstärken. Über die Interaktion von 7a mit einem Protein namens „B-cell lymphoma-extra large“ (Bcl-xL) kann Apoptose in menschlichen Nierenepithelzellen ausgelöst werden. Bcl-XL gehört zur B-cell lymphoma-2 Familie (Bcl-2), einer Gruppe von sogenannten „pro-survival“ Proteinen, die die Induktion der Apoptose inhibieren und so das Überleben der Zelle fördern. Durch die Wechselwirkung zwischen SARS-7a und der C-Terminalen Transmembrandomäne von Bcl-XL könnte dessen überlebenserhaltende Funktion unterdrückt und die Apoptose durch den Caspase-abhängigen Signalweg eingeleitet werden​6,7​.

SARS-7a kann auch eine Interaktion mit einer sogenannten Ap4a- Hydrolase, die in Prozesse der Zellproliferation, DNA-replikation, Apoptose und RNA-prozessierung involviert ist, eingehen und so deren Aktivität einschränken. Dieses Herunterregulieren der Hydrolaseaktivität führt zu einer gesteigerten Apa4 (Diadenosintetraphosphat) Produktion, wodurch es ebenfalls zu Apoptotischen Prozessen in der Zelle kommen kann​5​. Diese wirtszellenspezifische Regulation der Apoptose ermöglicht es dem Virus der Immunantwort zu entgehen und sich über weitere Organe auszubreiten.

Eine andere mögliche Funktion von ORF7a besteht in der Hemmung des Knochenmark-Matrix-Antigens 2 (BST-2), dass die Virusfreisetzung und so auch dessen Verbreitung, durch physisches Anheften der Virionen an die Plasmamembran, einschränken könnte. ORF7a antagonisiert diese einschränkende Wirkung durch die Bindung der extrazellulären Domäne von BST-2 wodurch dessen Glykosylierung verhindert wird. Wenn ein Wirkstoff gefunden wird, der in die ORF7a-BST-2 Interaktion eingreift, könnte dieser die Virusausbreitung verlangsamen oder sogar ganz stoppen​8​.

Zusammenfassung

Es lässt sich sagen, dass SARS-7a auf verschiedensten Wegen zur Pathogenität von SARS-CoV-2 beiträgt. Aus diesem Grund könnte die Entwicklung eines oder mehrerer Wirkstoffe, welche SARS-7a und dessen Interaktionen inhibieren, dabei helfen die Virusausbreitung zu verlangsamen und schwere Krankheitsverläufe verhindern.


6W37: Röntgenkristallstruktur des akzessorischen Proteins 7a, welches durch den Offenen Leserahmen ORF7a von SARSCoV-2 codiert wird.

1xak: Kristallstruktur des akzessorischen Proteins 7a von SARS-CoV. Das einzigartige typ I Transmembranprotein mit unbekannter Funktion hat eine kurze cytoplasmische Fraktion und eine Transmembrandomäne.

1y04: Röntgenkristallstruktur des akzessorischen Proteins X4, welches auch unter dem Namen 7a, U122 oder X4 bekannt ist. Das Protein lagert sich zu einem immunoglobulinartigen Betasandwich zusammen.


Weiterführende Literatur

  1. 1.
    Michel CJ, Mayer C, Poch O, Thompson JD. Characterization of accessory genes in coronavirus genomes. Virol J. Published online August 27, 2020. doi:10.1186/s12985-020-01402-1
  2. 2.
    Yoshimoto FK. The Proteins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2 or n-COV19), the Cause of COVID-19. Protein J. Published online May 23, 2020:198-216. doi:10.1007/s10930-020-09901-4
  3. 3.
    Fielding BC, Tan Y-J, Shuo S, et al. Characterization of a Unique Group-Specific Protein (U122) of the Severe Acute Respiratory Syndrome Coronavirus. JVI. Published online July 15, 2004:7311-7318. doi:10.1128/jvi.78.14.7311-7318.2004
  4. 4.
    Hänel K, Stangler T, Stoldt M, Willbold D. Solution structure of the X4 protein coded by the SARS related coronavirus reveals an immunoglobulin like fold and suggests a binding activity to integrin I domains. J Biomed Sci. Published online November 23, 2005:281-293. doi:10.1007/s11373-005-9043-9
  5. 5.
    Vasilenko N, Moshynskyy I, Zakhartchouk A. SARS coronavirus protein 7a interacts with human Ap4A-hydrolase. Virology Journal. Published online 2010:31. doi:10.1186/1743-422x-7-31
  6. 6.
    Tan Y-J, Fielding BC, Goh P-Y, et al. Overexpression of 7a, a Protein Specifically Encoded by the Severe Acute Respiratory Syndrome Coronavirus, Induces Apoptosis via a Caspase-Dependent Pathway. JVI. Published online December 15, 2004:14043-14047. doi:10.1128/jvi.78.24.14043-14047.2004
  7. 7.
    Tan Y-X, Tan THP, Lee MJ-R, et al. Induction of Apoptosis by the Severe Acute Respiratory Syndrome Coronavirus 7a Protein Is Dependent on Its Interaction with the Bcl-XL Protein. JVI. Published online April 11, 2007:6346-6355. doi:10.1128/jvi.00090-07
  8. 8.
    Taylor JK, Coleman CM, Postel S, et al. Severe Acute Respiratory Syndrome Coronavirus ORF7a Inhibits Bone Marrow Stromal Antigen 2 Virion Tethering through a Novel Mechanism of Glycosylation Interference. García-Sastre A, ed. J Virol. Published online September 16, 2015:11820-11833. doi:10.1128/jvi.02274-15

Leider steht für diesen Artikel keine deutsche Übersetzung zur Verfügung.

Introduction

It is known as VUI‑202012/01 or B.1.1.7 – the new mutation of the coronavirus Sars-CoV-2. It may be responsible for a sharply increased number of infections in the southeast of England (​1​), however, the scientific results leading to very strict lockdown measurements in the south of the UK, and travel restrictions across Europe are few and far between. Here, we have compiled what is known up until now.

On mutations

Mutations are normal in the evolution of life – and of viruses. If two similar viruses have infected the same cell, their genomes can become mixed-up, one of the reasons why animal influenza strains are considered so dangerous. This is also called recombination. Mutations can be caused by chemicals, radiation (including UV light) and errors during genome copying. A typical SARS-CoV-2 virus accumulates two amino acid changes per month in its genome — a rate of change about half that of influenza (​2​). This is because SARS-CoV-2 can repair RNA to some extent. But even so, this natural process led to thousands of mutations since the beginning of the pandemic. If they affected the virus life cycle negatively, that strain may have likely died out - if they did not make a difference or enhanced its chances of survival, it may have persisted.


Nextstrain interface as of 22/12/2020: Mutations happen a lot. Screenshot by Andrea Thorn / Coronavirus structural Task Force.
SARS-CoV-2 mutations as of 22/12/2020: Mutations happen a lot. A very good interface to the genetic variants of SARS-CoV-2 is https://nextstrain.org/ncov/global. Screenshot by Andrea Thorn / Coronavirus structural Task Force.

Many mutations that are observed occur in the spike protein, which both serves to recognize potential host cells but is also what is being recognized by antibodies (i.e., the immune system).

Changes here can be crucial for the survival of the virus (“evolutionary pressure”) as they could significantly alter its affinity to the human receptor ACE2, which the virus uses as gateway to our cells.

Animation of spike protein binding the host cell and the molecular mechanism merging host cell and virus. CC-BY-NC Coronavirus Structural Task Force / Iwasa Lab

What vaccines do

Most, if not all, potential COVID-19 vaccines expose our body to some part of the spike protein, which can be made by the body itself (mRNA vaccines) or carried by a harmless virus instead of SARS-CoV-2 (vector). Our body then produces antibodies which specifically recognize the spike and persist for several months. If we are exposed afterwards to the real virus, the body can recognize it immediately – and the risk of infection is much lower as the immune system swings into action immediately. Earlier this year, the spike mutation D614G (amino acid residue number 614 changing from aspartic acid (D) to glycine (G)) caused quite a stir in the media, and became the predominant form of SARS-CoV-2 (​2​, 3). However, if and in how far this was caused by natural selection is still debated (​3​). Another example which triggered an increased media coverage was the mutation Spike Y453F, which originated from infected minks in Denmark (​4​) and led to a culling of millions of animals. In any case, if we would be vaccinated with a spike protein form that would be different from the one in a virus we encounter later, there is a small chance that the vaccine may be rendered ineffective. This chance is, however, small for SARS-CoV-2, in any case much smaller than for HIV, which famously evaded any attempt to develop a vaccine.

Model of spike (green) with bound antibody (yellow). Both models can be 3D printed (Instructions).  Photo CC-BY-NC 2020 Andrea Thorn / Coronavirus Structural Taskforce.
Model of spike (green) with bound antibody (yellow). Both models can be 3D printed (Instructions). Photo CC-BY-NC 2020 Andrea Thorn / Coronavirus Structural Taskforce.

What do we know?

There was a steep rise in infections in the UK recently, as in most other European countries.

A new mutation of the virus has emerged and seems to replace the old version of SARS-CoV-2 (​5​). Thousands of patients have been found to carry this variant.

This new variant has more mutations at once than expected. These mutations have not observed in this combination before.

The variant has been reported in the UK, the Netherlands, Denmark, Australia and Belgium so far.

What is striking to me as scientist about these findings is one thing in particular: How could the British government find that thousands of people were having the new SARS-CoV-2 variant, instead of the old, if the illness does not look any different? Sequencing samples from each and every patient would be technically very challenging, if not impossible. How could they know? The answer is:

Serendipity

The main PCR test employed in the United Kingdom is Thermo Fisher's TaqPathCOVID-19. This test identifies RNA on three different genome locations: In ORF1ab, nucleotide and spike. Now, it stopped working for the spike portion of the test, while the other two RNAs were still found to be present, which likely prompted scientists to sequence some of the samples in question. And indeed, the new mutant has a deletion of histidine-69 and valine-70, called 69-70del. This permitted easy differentiation of patients with the old SARS-CoV-2 (3 hits) and the new (2 hits) and is the reason why we know so much about the epidemiology of this variant!​*​ It has also to be said that this test is not used as often in other countries, such as Germany, and this could well be the reason why we do not know if and how widespread it is here. In addition, other countries sequence much smaller proportions of virus isolates than the UK, so ongoing circulation of this variant outside of the UK cannot be excluded.

The details of the mutation

The new variant of SARS-CoV-2 VUI-202012/01 has 14 amino acid changes and three deletions affecting the genes for ORF1ab, spike and ORF8. One of these mutations (N501Y) occurs in the receptor binding domain and could lead to an increased binding affinity to the human ACE2. The 69-70 deletion has likely an immunological role and is the reason this mutant was detected so widely, as this RNA location is used for PCR tests. Another interesting mutation is the P681H, which is next to a furin cleavage site that has a biological significance in membrane fusion. These mutations could be responsible for the increased transmissibility. The effects of the other mutations aren’t fully investigated yet. Here is a list of the mutations which have been observed in the VUI‑202012/01 or B.1.1.7 variant:

T1001I in gene ORF1ab
A1708D in gene ORF1ab
I2230T in gene ORF1ab
SGF 3675-3677 deletion in gene ORF1ab
A1708D in gene ORF1ab
HV 69-70 deletion in spikeThe 69-70 deletion on the spike protein is a re-occurring mutation that has shown to often co-occur with other amino acid changes in the RBD (​6​, 7).
(1) Evasion to the human immune response and in association with other receptor binding domain changes (​1​)
(2) Immunological role (​8​)
(3) Leads to diagnostic failures which permit detection (see above, "Serendipity")
(4) Associated with immune escape in immunocompromised patients (​9(​8​))
Furthermore, the 69-70 deletion arose in multiple unrelated lineages and is associated with the evasion of the immune response (​9​). It is being hypothesized that this mutation undergoes a strong positive selection when exposed to convalescent plasma therapy in an immunocompromised human host (​7​).
Y144 deletion in spikeDeletion in the spike N-terminal domain (​9​)
N501Y in spikeOne of six key contact residues in the spike receptor binding domains, this mutation leads to an increasing binding affinity to human and murine ACE2 (​1​).
A570D in spikeMutation located at the spike receptor binding domain (​10​)
P681H in spikeThe P681H mutation is located directly next to the furin cleavage site. It is one of the four residues which are insertions when compared to closely related coronaviruses, creating a furin cleavage site in the spike protein between the spike S1 and S2 domains. This prompts the entry of the virus into respiratory epithelial cells as well as the transmission in animal models (​1​)
The S1/S2 furin cleavage site of SARS-CoV-2 is not found in closely related coronaviruses and has been shown to promote entry into respiratory epithelial cells and transmission in animal models (​9​)
T716I in spikeMutation in in the S2 domain
S982A in spikeMutation in in the S2 domain (​10​)
D1118H in spikeMutation in in the S2 domain (​8​)
Q27 stop in ORF8The Q27stop mutation in the ORF8 leads to the truncation of the ORF8, and as it only consists of 121 amino acids, the consequence might be a loss of function. These and the other mutations could be responsible for the increased transmissibility of the B.1.1.7 variant. In any case, this mutation truncates the ORF8 protein at residue 27 or renders it inactive which allows further downstream mutations to accrue. (​1​)
R52I in ORF8
Y73C in ORF8
D3L in nucleocapsid
S235F in nucleocapsid
picture of Spike mutation sites from the COVID-19 Genomics UK Consortium
Spike mutation sites. Picture by the COVID-19 Genomics UK Consortium (​9​).

Why were there so many mutations at once?

This could be a result of prolonged or chronical SARS-CoV-2 infections as study of these infections reveal unusually large numbers of nucleotide changes and deletion mutations and often high ratios of non-synonymous changes. In addition to this, convalescent plasma treatment can cause intra-patient virus genetic diversity (​11​).

What does the new mutation mean in terms of impact and epidemiology?

There was an increase in cases with the new strain in total and in

proportion to the old (​1​). What does that mean for us?

This is what the internet says:

The COVID-19 genomics UK consortium (COG) reports about a “priority set of SARS-CoV-2 Spike mutations that are of particular interest based on potential epidemiological significance in the UK and/or biological evidence based on the literature or unpublished work.” (​9​)

The New and Emerging Respiratory Virus Threats Advisory Group of the British government (NERVTAG) discussed the new variant on Friday and concluded that its growth rate is higher by 67-75% and that this is likely due to a selective advantage. “In summary, NERVTAG has moderate confidence that VUI-202012/01 demonstrates a substantial increase in transmissibility compared to other variants.” (​12​) This is very likely the source of Boris Johnson’s claim to this strain being “70% more infectious”.

The English government writes that PHE (Public Health England) „is working with partners to investigate and plans to share its findings over the next 2 weeks. There is currently no evidence to suggest that the variant has any impact on disease severity, antibody response or vaccine efficacy. High numbers of cases of the variant virus have been observed in some areas where there is also a high incidence of COVID-19. It is not yet known whether the variant is responsible for these increased numbers of cases.” (​13​)

Conclusion

From this, we conclude that the British government, and we, do not know yet. It has not been conclusively shown that the new variant is more infectious (likely), has an easier time to evade the host immune system or if the vaccine will be less effective against it (very unlikely). The epidemologic model which predicts a higher tranmissability has still to be published, the science is still in the making. Tests of vaccines against the new variant are ongoing and will take a few weeks. There is yet little evidence that this new variant poses a significantly bigger threat than others - or to the contrary.

Acknowledgements

While I am listed as author of this article, it could not have been written without the help and research by Pairoh Seeliger, Lea von Soosten, Luise Kandler, Erik Nebelung and Oliver Kippes who all helped in this.
I would also thank Nicolai Wilk from Thermo Fisher Scientific who quickly responded to my questions about their test.


The title picture shows mutation cards from the game Pandemic Expansion: On the Brink by Z-Man Games.


  1. ​*​
    The 69-70del mutation is predominantly observed in B.1.1 (including B.1.1.7), B.1.258, and the cluster 5 variant lineages of SARS-CoV-2.

References

  1. 1.
    A. Rambaut, Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations. virological.org (2020), (available at https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563).
  2. 2.
    E. Callaway, The coronavirus is mutating — does it matter? Nature, 174–177 (2020).
  3. 3.
    L. Zhang, C. B. Jackson, H. Mou, A. Ojha, H. Peng, B. D. Quinlan, E. S. Rangarajan, A. Pan, A. Vanderheiden, M. S. Suthar, W. Li, T. Izard, C. Rader, M. Farzan, H. Choe, SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nat Commun (2020), doi:10.1038/s41467-020-19808-4.
  4. 4.
    ECDC, Detection of new SARS-CoV-2 variants related to mink. www.ecdc.europa.eu (2020), (available at https://www.ecdc.europa.eu/sites/default/files/documents/RRA-SARS-CoV-2-in-mink-12-nov-2020.pdf).
  5. 5.
    ONS UK , Percentage of COVID-19 cases that are positive for ORF1ab and N genes. www.ons.gov.uk (2020), (available at https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/adhocs/12690percentageofcovid19casesthatarepositivefororf1abandngenes).
  6. 6.
    R. M. Dawood, M. A. El-Meguid, G. M. Salum, K. El-Wakeel, M. Shemis, M. K. El Awady, Bioinformatics prediction of B and T cell epitopes within the spike and nucleocapsid proteins of SARS-CoV2. Journal of Infection and Public Health (2020), doi:10.1016/j.jiph.2020.12.006.
  7. 7.
    S. A. Kemp, D. A. Collier, R. Datir, S. Gayed, A. Jahun, M. Hosmillo, I. A. Ferreira, C. Rees-Spear, P. Mlcochova, I. U. Lumb, D. Roberts, A. Chandra, N. Temperton, K. Sharrocks, E. Blane, J. A. Briggs, K. G. Smith, J. R. Bradley, C. Smith, R. Goldstein, I. G. Goodfellow, A. Smielewska, J. P. Skittrall, T. Gouliouris, E. Gkrania-Klotsas, C. J. Illingworth, L. E. McCoy, R. K. Gupta, Neutralising antibodies drive Spike mediated SARS-CoV-2 evasion (2020), , doi:10.1101/2020.12.05.20241927.
  8. 8.
    K. Kupferschmidt, Mutant coronavirus in the United Kingdom sets off alarms, but its importance remains unclear. Science (2020), doi:10.1126/science.abg2626.
  9. 9.
    COG, COG-UK update on SARS-CoV-2 Spike mutations of special interest Report 1. https://www.cogconsortium.uk (2020), (available at https://www.cogconsortium.uk/wp-content/uploads/2020/12/Report-1_COG-UK_19-December-2020_SARS-CoV-2-Mutations.pdf).
  10. 10.
    S. Kemp, W. Harvey, R. Datir, D. Collier, I. Ferreira, A. Carabelii, D. L. Robertson, R. K. Gupta, Recurrent emergence and transmission of a SARS-CoV-2 Spike deletion ΔH69/V70 (2020), , doi:10.1101/2020.12.14.422555.
  11. 11.
    ECDC, Threat Assessment Brief: Rapid increase of a SARS-CoV-2 variant with multiple spike protein mutations observed in the United Kingdom. www.ecdc.europa.eu (2020), (available at https://www.ecdc.europa.eu/en/publications-data/threat-assessment-brief-rapid-increase-sars-cov-2-variant-united-kingdom).
  12. 12.
    NERVTAG, NERVTAG meeting on SARS-CoV-2 variant under investigation VUI-202012/01. https://khub.net (2020), (available at https://khub.net/documents/135939561/338928724/SARS-CoV-2+variant+under+investigation%2C+meeting+minutes.pdf/962e866b-161f-2fd5-1030-32b6ab467896?t=1608470511452).
  13. 13.
    PHE, PHE investigating a novel variant of COVID-19 . www.gov.uk (2020), (available at https://www.gov.uk/government/news/phe-investigating-a-novel-variant-of-covid-19).

Für diesen Beitrag exisitiert leider keine deutsche Übersetzung.

This article has been written by Cameron Fyfe and Lea von Soosten.

In the previous two articles we spoke of proteins involved in RNA synthesis and proteins involved in removing errors during that process. There are also proteins produced by SARS-CoV-2 that can mimic functions of the host cell to avoid its defense mechanisms.

Figure 1. mRNA end caps with methylation VIP tag. Nsp14 is responsible for adding a methylation to produce the Cap 0 structure and Nsp16 methylates the Cap 0 structure to produce Cap 1. Figure modified from Ramanathan et al 2016​1​.

Eukaryotic cells have evolved to have various immune responses to fight infection or invasion from pathogens. One of these is to recognize and chop up any RNA that is from other organisms using enzymes called exoribonucleases. In order to differentiate "friendly" RNA from "foe" RNA is to give the cell's own RNA a VIP badge so that only unfriendly RNA will be shredded. These "VIP badges" are made of a 5’ to 5’ triphosphate linkage with two methylation modifications (see Fig. 1). In order to evade exoribonucleases, the virus SARS-CoV-2 has a way of 5’ to 5’ capping as well as adding its own methyl group VIP badges to protect its RNA from the defense mechanisms of invaded cells. Two Very Important Proteins, nsp14 and nsp16, have this methyltransferase activity using an S-Adenosyl methionine (SAM) as cofactor.

What are SAM methyltransferases?

Figure 2. A methyl group is transferred from the positively charged sulfur of S-Adenosyl methionine to a substrate resulting in a methylated product and S-Adenosyl homocysteine.

Methyltransferase enzymes are a large superfamily of proteins that perform the chemical addition of a methyl group (a carbon with three hydrogens) to a variety of substrates. These substrates include small molecules, other proteins, DNA, and RNA ​2,3​. This superfamily of proteins often uses a small molecule, S-Adenosyl methionine (SAM), to transfer a methyl group to its target substrate (Figure 2). During this process, the methyl group bound to the charged sulfur is brought in proximity to the target atom of the substrate, transferring the methyl group (Figure 2), resulting in the methylated product and the byproduct S-Adenosyl homocysteine (SAH).

Methyltransferases of SARS-CoV-2

Figure 3. The mRNA cap synthesis process in SARS-CoV-2. The process is performed by the sequential action of four enzymes: Nsp13 (red), a still unknown GTase, Nsp14 (green/orange) and Nsp16 (pink). The presence of the co-factor Nsp10 (blue) is fundamental for the activity of the last two enzymes. Figure modified from Romano, M. et al 2020.

In a previous article we spoke of the exoribonuclease (ExoN) proofreading activity of Nsp14 (not to be confused with the host cell's own exoribonucleases that are part of the immune system, see above). After the 5’ to 5’ guanine triphosphate addition has been performed on the mRNA the guanine-N7-methyltransferase activity of Nsp14 comes into play producing the first Cap0 structure with a VIP tag (Figure 1, 3). Only after this methylation has been performed can Nsp16 have action and perform the second 2’O-methylation to produce the Cap1 structure (Figure 1, 3).

Not only do both of these proteins perform VIP methylations of mRNA, but they also both bind another non-structural protein, Nsp10. The binding of Nsp10 has been shown to increase activity in both Nsp14 ExoN activity and Nsp16 methyltransferase activity​4​. Independently, Nsp10 has also been shown to have the ability to bind both single and double stranded DNA and RNA​5​.

Structures of nsp14 and nsp16

Figure 4. Electrostatic surface of the methyltransferase domains of Nsp14 and Nsp16. A. Active site of the methyltransferase domain of Nsp14 (PDB: 5c8s) with bound Guanosine-P3-adenosine-5',5'-triphosphate (GpppA) and S-Adenosyl homocysteine (green). The hinge region, connecting ExoN to the methyltransferase domain, that covers the methyltransferase site is not present. B. Methyltransferase active site of Nsp16 (PDB: 6wks) with bound P1-7-methylguanosine-P3-adenosine-5',5'-triphosphate (m7GpppA) (teal) and S-Adenosyl methionine (green).

Nsp14 consists of two domains, each carrying out one specific task: the first is responsible for the ExoN activity, whilst the second executes the first methylation of the Guanosine-N7 of the RNA end cap. The two domains are connected by a flexible region that acts like a hinge, allowing movement between the domains. The second domain has an unusual and unique structure which does not follow the typical Rossmann fold seen in other SAM methyltransferases. The methyltransferase active site has a negatively charged binding pocket that holds SAM (SAH in Figure 4. A) in close proximity to the Guanosine-P3-adenosine-5',5'-triphosphate (GpppA) substrate (Figure 4A). The binding pocket holding the GpppA has a positive charge and the surface charge of the region below is also positively charged (Figure 4A). The distance between the N7 of the 5’ Guanosine and the sulfur that transfers the methyl group is 4.4 Å​5,6​. This close proximity of cofactor and substrate facilitates the methylation.

Similar to Nsp14, Nsp16 has a negatively charged binding pocket to position SAM in close proximity to the m7GpppA substrate (Figure 4. B). The m7GpppA binding site has a positive charge. The space nearby the 3’ end of the m7GpppA also has an overall positive charge and would be expected to bind the extension of the full length RNA (Figure 4. B)​4​. The distance between the methyl group and the sulfur of SAM and the 2’O of the m7GpppA substrate is 3.1Å and 4.9Å, respectively.

Structure of nsp10 and its function

Figure 5. Allosteric activator Nsp10 (Blue) in complex with Nsp14 (A, PDB: 5c8s, Orange) and Nsp16 (B, PDB: 6w4h, Pink). Models aligned using Nsp10.

In a previous article where we spoke about the exoribonuclease (ExoN) activity of the first domain of nsp14, we highlighted the interaction between nsp14 and nsp10 (Figure 5A). This is quite significant, as the activity of ExoN increases 30-fold when nsp10 and nsp14 are bound. Nsp10 also functions as a co-factor for nsp16, stabilizing the SAM-binding pocket​7​ and enhances its methyltransferase enzymatic activity significantly​4​ (Figure 5B). For SARS-CoV, and similarly for MERS-CoV, the affinity for m7GpppA-RNA and m7GpppA cap analogue of nsp16 was found to be low until binding to nsp10, which enhanced the affinity for binding to RNA​8,9​. With a reduced activity in Nsp16 in the absence of Nsp10 and a huge decrease in activity of the exonuclease domain of Nsp14, interfering with these interactions could result in decreased viability of COVID-19.

Methyltransferases Nsp14 and Nsp16 as drugs targets

As both Nsp14 and Nsp16 use the cofactor SAM and have affinity for the endcap of RNA, these two binding sites could be worthwhile targets for drug development in the fight against SARS-CoV-2. Without the VIP status provided by the methylation of RNA the host immune system could defend against the viral RNA. It might be possible to block these binding pockets by letting the protein bind to something that is similar to SAM, which cannot function as a methyl donor. An additional challenge is that the inhibitor has to be very specific to Nsp14 or Nsp16, so as not to affect similar human proteins in a negative way.

Sinefungin is a 5’-aminoalkyl analog of SAH and SAM, which can do exactly that: it has the ability to inhibit all SAM methyltransferases (Figure 6). Sinefungin was first discovered in 1973 from Strepromyces griseolus and was described as having antifungal antibiotic properties​10​.  

Figure 6. Sinefungins similarity to SAM and SAH with its recognition by nsp16 in the SAM methyltransferase active site. A. Chemical structure comparison of SAM, SAH, and sinefungin. B. Detailed view of sinefungin recognition, important amino acid residues are shown in stick representation, waters as red spheres, and hydrogen bonds are shown as dashed lines. Figure modified from Krafcikova et al. 2020​4​.

A major issue with targeting the SAM binding site of Nsps with compounds such as sinefungin (Figure 6) is that there are many proteins within humans that use SAM as a cofactor for normal function. This results in singefungin and other similar compounds having toxic effects on human cells. Synthetic chemists have already been able to synthesize analogs of sinefungin with improved affinities to specific SAM methyltransferases. Recently, specific inhibitors have been developed to target a nicotinamide SAM methyltransferase​11​. This inhibitor was developed to have affinity to both the cofactor binding site and the substrate binding site by combining the nicotinamide substrate with the SAM cofactor. Recent work has looked at how singefungin binds to the active site of Nsp16 in order to have a detailed understanding of its interaction to design more specific inhibitors that can target methyltransferases from SARS-CoV-2​4​. Similar to the development of the nicotinamide SAM methyltransferase inhibitor, developing an inhibitor which binds to the substrate binding site as well as to the cofactor binding site could be effective. As Nsp14 and Nsp16 target different substrates, any inhibitors designed in this way would likely have specificity to only one of the two methyltransferases from SARS-CoV-2. Of the two, Nsp14 might be easier to target as it has a unique structure not similar to human SAM methyltransferases.

As both Nsp14 and Nsp16 interact with Nsp10 for normal function, interfering with this interaction could reduce activity of these enzymes. Further still, as the interface between Nsp10 with Nsp14 and Nsp16 has overlap the target is smaller for blocking binding of these proteins.

One way to look for possible drugs is repurposing those which are already approved for other diseases. Initial screen can be done in silico, by simulations of the interaction between the protein and the already existing and approved drug. However, such studies are highly dependent on the protein structures employed being correct, which is why we are evaluating all structures that are published for SARS-CoV and SARS-CoV-2.

Available structures

If you would like to look at the currently available structures for Nsp10, Nsp14, and Nsp16, they are available from our data base; we provide information on the quality of measurement data and models as well as improved structures.

All structures available for Nsp14 are bound to Nsp10 and are only available from SARS-CoV. The highest resolution structure of Nsp14 is PDB entry 5c8t at 3.2Å. It has a bound S-Adenosyl methionine ligand as well as zinc ions present. Alongside this, another structure of Nsp14 bound to S-Adenosyl homocysteine and a guanosine-triphosphate-adenosine ligand as well as zinc at 3.33Å resolution has been published (PDB: 5c8s). Additionally, two structures with zinc atoms but no ligands are available (PDB 5c8u 3.4Å at and 5nfy at 3.34Å). Both PDB entries 5c8t and 5nfy have been improved structures by our group.

Similar to Nsp14 all structures of Nsp16 are bound to Nsp10. There are currently 18 structures for Nsp16 bound to Nsp10 from SARS-CoV-2. The highest resolution structure is at 1.8Å and has SAM, Guanosine triphosphate and Adenosine bound as well as zinc atoms. The PDB:6wkq has Nsp16 bound to the methyltransferase inhibitor Sinefungin at 1.98Å resolution. Two further structures of note are 7jhe and 7jib that have various functional ligands. A further four structures are available from SARS-CoV.

Nsp10 alone: Currently there are two structures of Nsp10 from SARS-CoV-2, PDB 6zpe and 6zct, with the former having the highest resolution of 1.58 Å with bound zinc (PDB 6zpe). There are also three  structures of Nsp10 from SARS-CoV available, PDB 2fyg, 2g9t, and 2ga6.


  1. 1.
    Ramanathan A, Robb GB, Chan S-H. mRNA capping: biological functions and applications. Nucleic Acids Res. Published online June 17, 2016:7511-7526. doi:10.1093/nar/gkw551
  2. 2.
    Boriack-Sjodin PA, Swinger KK. Protein Methyltransferases: A Distinct, Diverse, and Dynamic Family of Enzymes. Biochemistry. Published online December 22, 2015:1557-1569. doi:10.1021/acs.biochem.5b01129
  3. 3.
    Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet. Published online October 16, 2017:81-92. doi:10.1038/nrg.2017.80
  4. 4.
    Krafcikova P, Silhan J, Nencka R, Boura E. Structural analysis of the SARS-CoV-2 methyltransferase complex involved in RNA cap creation bound to sinefungin. Nat Commun. Published online July 24, 2020. doi:10.1038/s41467-020-17495-9
  5. 5.
    Ferron F, Subissi L, Silveira De Morais AT, et al. Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA. Proc Natl Acad Sci USA. Published online December 26, 2017:E162-E171. doi:10.1073/pnas.1718806115
  6. 6.
    Ma Y, Wu L, Shaw N, et al. Structural basis and functional analysis of the SARS coronavirus nsp14–nsp10 complex. Proc Natl Acad Sci USA. Published online July 9, 2015:9436-9441. doi:10.1073/pnas.1508686112
  7. 7.
    Rosas-Lemus M, Minasov G, Shuvalova L, et al. The crystal structure of nsp10-nsp16 heterodimer from SARS-CoV-2 in complex with S-adenosylmethionine. Published online April 20, 2020. doi:10.1101/2020.04.17.047498
  8. 8.
    Romano M, Ruggiero A, Squeglia F, Maga G, Berisio R. A Structural View of SARS-CoV-2 RNA Replication Machinery: RNA Synthesis, Proofreading and Final Capping. Cells. Published online May 20, 2020:1267. doi:10.3390/cells9051267
  9. 9.
    Chen Y, Su C, Ke M, et al. Biochemical and Structural Insights into the Mechanisms of SARS Coronavirus RNA Ribose 2′-O-Methylation by nsp16/nsp10 Protein Complex. Kuhn RJ, ed. PLoS Pathog. Published online October 13, 2011:e1002294. doi:10.1371/journal.ppat.1002294
  10. 10.
    Robert L. H, Marvin M. H. A9145, A NEW ADENINE-CONTAINING ANTIFUNGAL ANTIBIOTIC. ‎J Antibiot. 1973;26(8):463-465. doi:10.7164/antibiotics.26.463
  11. 11.
    Policarpo RL, Decultot L, May E, et al. High-Affinity Alkynyl Bisubstrate Inhibitors of Nicotinamide N-Methyltransferase (NNMT). J Med Chem. Published online October 7, 2019:9837-9873. doi:10.1021/acs.jmedchem.9b01238

Für diesen Beitrag exisitiert leider keine deutsche Übersetzung.

COVID-19 is caused by the new coronavirus SARS-CoV-2. This virus has a characteristic virus hull featuring surface proteins which are commonly called “spikes”. Protruding from the viral hull like “spikes of a crown”, they give the coronavirus its name (corona = crown).  These proteins make the first contact with human cells and are akin to keys that use a human receptor called “angiotensin-converting enzyme2” (ACE2) as a backdoor to gain access to and infect the cell.

SARS-COV2 Animated picture. Realistic surface and spike proteins with glycosylation. Image: Thomas Splettstoesser; www.scistyle.com
Fig. 1. SARS-COV2 Animated picture. Numerous spike proteins, coloured in green, protrude from the virus hull which is coloured in brown. Spikes enable the coronavirus to invade human epithelial cells. Image: Thomas Splettstoesser; www.scistyle.com

1. Fuction of ACE2

ACE2 is a membrane protein which is anchored in the human cell membrane of epithelial cells. This type of cells can be found on the surface of lung, intestine, heart and kidney tissue. As a type I membrane protein, its primary function is to take part in maturation of angiotensin, a peptide hormone which controls vasoconstriction and blood pressure. ACE2 can be compared to a lock which can be unlocked by the coronavirus spike protein. The virus can then enter the cell and hijack its functions to reproduce itself, thus causing the Covid-19 infection which poses a serious danger to humanity, especially for older people and people with pre-existing conditions. For this reason, one approach to combating SARS-CoV-2 is to target and inhibit the spike to prevent infection. In order to do so, knowledge of the structural features of the spike and its interaction processes with ACE2 are indispensable. (Further information about how macromolecular structures are visualized can be found on our homepage: https://insidecorona.net/visualizing-macromolecular-structures/)

2. Spike: Structure and Fusion Mechanism

Fig. 2. Image of a spike protein (green) protruding out of the viral envelope (brown). This image shows the structure of a spike protein divided into several subdomains. Each subdomain comprises a specific function necessary for binding and fusion. The transmembrane domain anchors the spike protein in the virus membrane.  Heptat repeat 1, 2 and the fusion peptide play key roles in mediation of the fusion process and with the RBD domain, the virus makes contact to human cells. Note that only “stumps” of carbohydrate chains are shown. Image: Thomas Splettstoesser; www.scistyle.com

The Spike protein has a trimeric shape comprising three identical monomeric structural elements. Each of these monomers can fold out akin to a modern car key with a fold-out key element with specific teeth on its surface. This fold-out key element is the so-called “receptor binding domain” (RBD). The spike can only interact with ACE2 when its RBD is in a folded-out position, exposing its teeth, or  “receptor binding motive” (RBM). As the name suggests, it comprises a motive of different amino acids which then can bind and unlock the ACE2 receptor. This key lock mechanism triggers a cascade of events initiating fusion with the host cell. First, protein scissors are recruited to the binding site. These scissors (furin & transmembrane serine protease 2) cleave the spike protein for subsequent activation. The active spike molecule then rearranges itself to form a long structural “hook” (formed of HR1/ HR2 and FP see Fig.2) that brings the epithelial cell and viral cell membrane into close proximity for fusion. Once the fusion is completed, the path for the virus is clear to transfer its genome encoded in ribonucleic acid (RNA) into the host cell. This successful transfer then enables the virus to multiply itself and finally spread from cell to cell, causeing Covid-19 in its wake.

Fig. 3. This image shows a spike protein in complex with the human ACE2 receptor. (PDB:6vsb/6lzg). Left: The structure of a spike protein coloured in orange in complex with the human ACE2 receptor coloured in light orange. The white box shows the interaction site which is shown enlarged in the image ion the right. Right: The interaction site between spike and ACE2. Spike's "receptor binding domain (RBD)" includes a "receptor binding motif (RBM)" whose amino acids interact with those of the human receptor through hydrophilic interactions. These amino acids are shown as sticks protruding from the RBM and ACE2. Image: Sabrina Stäb

3. Evading the Immune System with Carbohydrate Chains

The human immune system normally recognizes the surface proteins of foreign organisms such as viruses or bacteria and reacts with an immune response to combat them. Spike proteins are such surface proteins but because of structural peculiarities, the coronavirus evades both the innate and the adaptive human immune system. The secret of these structural peculiarities are the N-glycans. These are long carbohydrate chains which sit on spike’s surface.  Each spike comprises 66 N-glycans forming a protective shield around the protein. Hence the human immune system has problems recognizing spikes and identifying the coronavirus as an enemy.

Fig. 5. Ribbon diagrams of a spike trimer with N-glycans on its surface coloured in cyan (PDB: 6vxx). In Image a, the spike protein is shown sideways and in b, the trimer can be seen from above. Unfortunately, both X-ray crystallography and cryo-EM cannot resolve long carbohydrate chains, so the structures of the chains shown in Figure 4 contain a maximum of three sugar monomers, while in most cases, the carbohydrate chains are much longer, covering most of the contact surfaces of the upper spike protein. Image: Sabrina Stäb

The COVID 19 pandemic has a massive impact on our lives, our health and the global economy. Scientists around the world are trying to develop new drugs to combat the virus. Since the spike plays a critical role in the infection process, it is a prime target for drug development against the pandemic.  One drug approach to inhibit the interaction between spike and the ACE2 receptor is to cap the spike protein using antibodies. Antibodies are proteins, normally produced by the human immune system to fight viruses. The idea is to treat patients with antibodies that cap the RBD of spike, thus preventing interactions with ACE2. This would lead to a nonfunctional spike, blocking the coronavirus from entering the cell (The key would no longer fit the lock). Another approach includes the development of small molecules that target and inactivate the protein scissor transmembrane serine protease 2 (see chapter 2), as the spike’s functionality depends on its cleavage activity. Since the spike protein decorates the virus hull, it could even be part of a potential vaccine. For this reason,  the spike protein could also become the key in the molecular fight against COVID-19.

Für diesen Artikel exisitiert leider keine deutsche Übersetzung.

Crystallography has a problem. Some amino acid side chains in our structures simply can’t be seen in our maps (Fig. 1). Crystallographic maps represent many protein molecules in a crystal lattice, thousands of copies of the same molecule averaged over measurement time and unit cells. So, what happens with inherently flexible regions of our protein? The average of many different conformations leaves us with no map to guide us in modelling our side chain. So, what is the best way to deal with this as a model builder?

Figure 1: The sequence tells us this amino acid is a lysine but there is clearly no density to support this side chain model.

A passionate discussion within the Task Force has resulted in the following options for dealing with this situation:

  1. Set the occupancy of the unresolved atoms to 0
  2. Leave the atoms at full occupancy and allow the B-factors to inflate
  3. Trim the side chains to what can be resolved by the density
  4. Mutate the residue to a Proline, set your computer on fire, and walk away laughing maniacally.

Just to be clear, option four should only be considered in the direst of circumstances. Please consider options one to three before resorting to proline and fire, and even then, only with a computer you own. With that said, what is the best option? Sadly, none are ideal solutions to the problem so let’s discuss. 

Option 1 can be misleading as the residue appears to be present in the model (Fig. 2), despite there being no experimental evidence for it, until you check the occupancy or load the corresponding map with your model which will tell you otherwise. An occupancy of zero also adds no useful information to the model and may even exclude atoms in this position, like opening the airlock and sending it flying out into the vacuum of space.

Figure 2: Option 2, where side chain atoms with an occupancy of zero are marked in Coot by dots on the atoms

Option 2 is effectively the opposite of option 1, providing a full occupancy side chain in a sensible rotamer conformation and accept the resulting phase bias*. However, this can be equally misleading if the downstream user doesn’t check the B-factors of the sidechain, which will be very large, as they represent not only (smaller) displacement but (larger) disorder. In addition, allowing the B-factor to “explode” is not always an effective way to deal with this problem, as strong negative peaks can still be observed around the side chain in some cases. Another argument for maintaining an occupancy of 1 is that the protein sequence tells us a certain amino acid is present at a position, unless evidence of chemical clipping has been provided (mass spec, for example). Therefore, the atoms must be present in the protein so should be included in the model for the B-factors to deal with the physics of the situation. Options 1 and 2 both have the advantage of providing a complete set of atoms for downstream use in molecular modelling.

*During refinement our model will always bias the phase calculation which gives us our maps. Ideally, we would like out model to maximally affect the phases when we are confident our model is correct and minimally affect the phases when we are less confident. So, an occupancy of 1 (high confidence) where we observe no peaks in our map (low confidence) will lead to what we call phase bias. This can work both ways by underestimating the contribution of our model by setting the occupancy to 0 (option 1).

This brings us onto option 3: trimming down the side chain to what we can in the map (Fig. 3). The “make them work for it” option. If a downstream user is paying attention and realises that, for example, the side chain they are looking at is meant to be a lysine, despite the model only having atoms up to Cß, this should be the least misleading of all the options. The residue should not be mutated to, say, Alanine in this case, as that would mean you are wilfully misleading downstream users. Upon realising the atoms are missing, the downstream user can then model a (hopefully sensible) rotamer for their simulations if needed. The downside is that this approach does introduce some negative bias in favour of modelling bulk solvent into this area. Like I said, none of the options are ideal solutions.

Figure 3: Lysine following a haircut.

So, following this discussion between Nick Pearce, Dale Tronrud, Gianluca Santoni, Andrea Thorn, and I, we recommend option 3 as the best of the available solutions. We believe that the end goal of a crystallographic experiment should be to build atoms justified by the experimental data, i.e. the map, and leave the prediction of unobservable atoms to downstream users. We (crystallographers) are not here to “make it easier for users to avoid thinking about it”. However, after publishing the first iteration of this article a number of crystallographers made the case for option 2 on twitter and a poll of those involved resulted in 53.8% in favour of option 2 (Figure 4), so the matter is still far from resolved.

Figure 4: Twitter poll for options 1 to 4.

However, it’s nice to know that if we really can’t agree on the best method we can at least agree on not option 1, and there's always the fall back plan of option 4 and watch the PDB burn if we get desperate.

Figure 5: Option 4. Sorry not sorry.

Für diesen Artikel steht leider keine deutsche Übersetzung zur Verfügung.

An important drug target

In the first part of this series we compared the protein nsp3 from SARS-CoV and SARS-CoV-2 by sequence. Now we delve deeper into the differences between these two proteins and follow through by analyzing the structure of one domain of nsp3 in particular: papain-like protease. This domain is a very relevant drug target because of its ability not only to cleave the polyprotein, but also remove some of the post-translational modification our cells use to fight these viruses. Without papain-like protease, the virus would be unable to spread COVID-19.

Like the entire nsp3 protein, the papain-like-protease (Pl2pro) domain is localized close to the endoplasmic reticulum’s (ER) membranes. The transmembrane domains hold it in place while the majority of the protein protrudes out of the ER membrane into the cytoplasm.[1]

SARS-CoV genome
Fig 1: Position of the nsp3 gene on the SARS-CoV-1 genome. Nsp3 is seperated into 12 domains. Picture by Thomas Splettstoesser, scistyle.com.

Ubiquitin-like-domain 2

We cannot discuss the Pl2pro domain without its little neighbor, which has been speculated to influence protease domain functionality.

In ubiquitin-specific proteases, the function of comparable Ubl2 domains is attributed to substrate recruitment or an increase in catalytic efficency. Ubiquitin-like-domain 2 (Ubl2) is the domain residing directly adjacent to the N-terminus of the Pl2pro catalytic domain. These ubiquitin-like domain seems to be more conserved compared to Ubl1 in different coronavirus species.[2]

If, in SARS-CoV and Murine coronavirus (MHV), Ubl2 is removed, Pl2pro loses its structural integrity. In addition, Pl2pro is then no longer able to act as an Interferon (IFN) antagonist (see below). However, some studies suggest that the Ubl2 domain in MERS-CoV might not be as essential as originally thought and in cell-based studies of this virus, Pl2pro could retain some of its enzymatic functions without the Ubl2 domain.[3]

To date, several inconsistent roles of Ubl2 were reported, and its exact function and inner workings remain enigmatic. This is being highlighted the fact that there are significant differences between the coronaviruses, and as a consequence, we need to exercise caution in applying our findings to SARS-CoV-2.

Combating the Host's Immune System

In the family of coronaviridae, viruses with either one or two Plpro domains can be found, with SARS-CoV and SARS-CoV-2 only having one. Confusingly, this single domain is however still called Pl2pro, even if it is the only papain-like protease domain in the viral genome.

Pl2pro cleaves the polyprotein from nsp1 (leader protein) up to nsp3. While Pl2pro cuts between nsp1-( ELNGG↓AV)-nsp2-( RLKGG↓AP)-nsp3-( SLKGG↓KI)-nsp4, the nsp5 (3c-like protease) cleaves the rest of the polyprotein. [2] The cysteine protease Plpro is similar to human ubiquitin-specific-protease (USP) in that it adopts a right-hand fold with "thumb", "palm" and "finger" subdomains.

Different regions of Plpro
Fig. 2: Plpro of nsp3 SARS-CoV (PDB-ID: 5E6J) with the catalytic triad marked in red. The Finger domain (blue), palm domain (light green) and thumb domain (forest green). Picture by Kristopher Nolte

Despite the variations of Pl2pro in different coronaviridae, the same catalytic motif of three amino acid residues is essential for the stability and proteolytic activity of the domain: Cys112 is located in the thumb, His273 and Asp287 are located in the palm subdomain. (The numbers identifying these residues can vary between species.)

nsp3Plpro catalytic Mechanism
Fig 3: Catalytic cycle and proposed chemical mechanism of SARS-CoV PL2pro proteolysis. Active site residues of the catalytic triad (Cys112, His273, Asp287) and oxyanion hole residue Trp107 are shown in black. The peptide substrate is shown in green and a catalytic water molecule is shown in blue. [1] Source: The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds, Beaz-Santos et al.

In addition, Pl2pro has deubiquitinating and deISGylating (removal of ISG15 from target proteins) abilities.[4] Both ubiquitin and ISG15 regulate facets of the immune response and through their removal Pl2pro poses as an antagonist to the human immune response. They can stimulate the production of cytokines, chemokines and other IFN-stimulated gene products which have antiviral properties. [6] ISG 15 is an ubiquitin-like modifier composed of two ubiquitin-like folds that has an essential role in marking newly synthesized proteins during the antiviral response.[3] Post-translational modification by ubiquitin and interferon-stimulating gene 15 (ISG15) is reversed by isopeptide bond hydrolysis. Figure 3 shows a proposed mechanism for the cleaving of isopeptide bonds by SARS-CoV.

Ubiquitin bound to Plpro
Fig. 4: Ubiquitin (light blue) bound to Plpro (green) with the catalytic triad marked red. (PDB-ID: 5E6J) Picture by Kristopher Nolte

An example

Toll-like receptors (TLRs) are an important part of the machinery of the human immune response, which recognizes the pathogen-associated molecular patterns. The ability of the host cell to transduce the so-called Toll-like receptor 7 (TLR7) mediated immune response is diminished (Fig. 5) by Pl2pro as it removes Lys63-linked-ubiquitin from the TNF receptor associated factors TRAF3 and TRAF6. [5]

In addition, SARS-CoV can hamper the antiviral activities of interferon. The Pl2pro domain inhibits in combination with a transmembrane (TM) domain the STING mediated activation of interferon expression. PL2pro-TM interacts with TRAF3, TBK1, IKKε, STING and IRF3, the key components assembling a regulatory complex for activation of IFN expression.[5]

Fig. 5: Different ways in which Pl2pro of various coronaviruses interact with the human immune response. A pointed circle symbol means the binding of one protein to another. If the binding has positive effect on the protein it is marked with a plus. The triangle marks the cleavage of ubiquitin from the target protein. Also,nsp3 cleaves ISG15 off target shown on the right. Picture by Kristopher Nolte.

Another tool to fight the coronavirus in human cells is the "guardian of the genome", p53. The tumor supressor protein p53 impedes the replication of SARS-CoV, though the virus fights back with Pl2pro, which binds a p53 degradation stimulator named "RING finger and CHY zinc finger domain-containing protein 1" (or short: RCHY1). Enhanced by the Macro somains in NSP3, this binding enhances the stability of RCHY1 and hence promotes the degradation of p53. In addition, Pl2pro blocks another crucial cellular defense mechanism: The NF-κB pathway, which regulates immune responses to infections. SARS-CoV Pl2pro can stabilize IκBα, an inhibitor of NF-κB.[3]

Although all Pl2pro in different coronaviridae suppress the immune response, the targets differ between various species. For example, SARS-CoV Pl2pro preferentially processes Lys48 linked poly-ubiquitin chains, which are markers for proteasome degradation. MERS, on the other hand, shows no differences in effectivity between Lys48 and Lys63 linked di-Ubq chains. Lys63-linked chains are related to signal transduction cascades of the host immune system. Studies have shown that specificity among Pl2pro for Ubiquitin and ISG15 substrates can be altered with as little as a single amino acid change.[6] However, even though there are differences, for SARS-CoV-2, it is likely that at least some of the functions are similar.

Structural comparison

In order to predict Pl2Pro function for the novel Coronavirus SARS-CoV-2, we start by aligning their sequence like we did in the first part of this series to comapare the sequence with the one from SARS-CoV-2. Both domains share a similarity of 82.8% over the length of 313 amino acids. However, this time, we go for a more detailed analysis of the 54 individual differences, which are:

T3R N14I V20V N48N H49S V56Y D60N E66V D75T S77P P95Y G99N S114A V115T L116A L119T E123I K125L P129P A134D A143E N155C H170S L171Y Q173F S179D K181C C191T T195Q T196Q G200K N214E L215Q K216F G218K I221Q C225T D228K A229Q Y232K F240P Y250Q L252E Q254K G255H C259T E262S H274K K278S I284C L289L S293S T300I S308N
(The first letter refers to SARS-CoV, and the second to the amino acid residue in SARS-CoV-2.)

Figure 6: SARS-CoV (PDB-ID: 5Y3Q) and SARS-CoV-2 (PDB-ID: 6WZU) Pl2pro overlaid over each other. RMSD = 0.758. Differences in SARS-CoV and SARS-CoV-2 marked in red. Picture by Kristopher Nolte

The mutations are evenly spread over the protein. None of the catalytic triad (Cys 112, His 273, Asp287) are changed as is to be expected given their conservation in all other coronaviruses. On further investigation, however, in the motif which interacts with ubiquitin six sites are different: S170T, Y171H, F216L, Q195K, T225V, and K232Q. Earlier studies concluded that the mutation of position 232 from Glutamine to Lysine increases the affinity for ubiquitin at the expense of the de-ubiquitination effectiveness.[6] The kinetics of SARS-CoV-2 nsp3 Pl2pro were studied to test if the protease domain of nsp3 has a reduced effectiveness in binding ubiquitin compared to nsp3 from SARS-CoV, MERS-CoV.
All three Pl2Pro variants cleave more ISG15 than ubiquitin. SARS-CoV has the fastest kinetics of the three viruses. And, the slower kinetics of SARS-CoV-2 resemble those of MERS-CoV rather more than SARS-CoV, having a 10 times higher turnover rate (kcat) as a deISGylase than as a deubiquitase.[6]

Besides the kinetics, the Pl2pro’s affinity for different poly-ubiquitin linkage sites was measured. The result shows that while SARS-CoV-2 can cut K48-Ub linked polyproteins, it seems to lack an ability to cut other polyubiquitin chains. Those K48-Ub linked polyproteins are cleaved at a slower rate than by SARS-CoV. In this regard, SARS-CoV-2 distinguishes itself from MERS-CoV which has the ability to cleave K63-linkages. It is suggested that the decrease in deubiquitinase effectiveness may not be irrelevant, but could lead to the often-mild symptoms that are a factor in why SARS-CoV-2 has been able to evade our efforts in quarantine. But this is mere speculation and a lot more research is needed to resolve the matter.[6]

PL2pro as a drug target

Pl2pro was a potential drug target early on in SARS-CoV-2 research. Hilgenfeld et al. name two major challenges we have to overcome to find a drug targeting Pl2pro. One is that the binding sites are tailor-made to bind glycine residues. Also, this very specific binding motif is rather ubiquitious in our cells. These two problems make it difficult to find an inhibitor which fits and is specific to Pl2pro. However, scientists found a weak spot: a loop called Blocking Loop 2 (BL2) regulates substrate binding and may be a promising target to inhibit PL2pro.[2] Naphthalene based inhibitors, which were earlier proposed to inhibit the BL2 of SARS-CoV, were shown to also inhibit SARS-CoV-2 Pl2pro, in particular an inhibitor called GRL-0617.[6]

For in-silico drug development, it might be prudent to choose high-resolution structures which already have a ligand or inhibitor bound, such as 6yva, 6wuu, 6wx4 or 6yaa. Technically speaking, 6wrh, albeit being a mutant, is one of the highest-quality structures available for SARS-CoV-2 Pl2pro.

In fact, a lot of research is still required to consolidate our understanding of this protein and its domains. In spite of that, we are making progress in our endeavor to fight this virus - and every step we take is one more to win this fight.

Sources

[1] Báez-Santos YM, St John SE, Mesecar AD. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antiviral Res. 2015;115:21-38. doi:10.1016/j.antiviral.2014.12.015, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5896749/

[2] Lei J, Kusov Y, Hilgenfeld R. Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein. Antiviral Res. 2018;149:58-74. doi:10.1016/j.antiviral.2017.11.001, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7113668/

[3] Clasman JR, Báez-Santos YM, Mettelman RC, O'Brien A, Baker SC, Mesecar AD. X-ray Structure and Enzymatic Activity Profile of a Core Papain-like Protease of MERS Coronavirus with utility for structure-based drug design. Sci Rep. 2017;7:40292. Published 2017 Jan 12. doi:10.1038/srep40292, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5228125/

[4] Lei J, Hilgenfeld R. RNA-virus proteases counteracting host innate immunity. FEBS Lett. 2017;591(20):3190-3210. doi:10.1002/1873-3468.12827, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7163997/

[5] Chen X, Yang X, Zheng Y, Yang Y, Xing Y, Chen Z. SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3-TBK1 complex. Protein Cell. 2014;5(5):369-381. doi:10.1007/s13238-014-0026-3, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3996160/

[6] Freitas BT, Durie IA, Murray J, et al. Characterization and Noncovalent Inhibition of the Deubiquitinase and deISGylase Activity of SARS-CoV-2 Papain-Like Protease [published online ahead of print, 2020 Jun 4]. ACS Infect Dis. 2020;acsinfecdis.0c00168. doi:10.1021/acsinfecdis.0c00168, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7274171/

Für diesen Beitrag exisitiert leider keine deutsche Übersetzung.

The world holds its breath as the novel Coronavirus continues to spread across the world, bringing our lives to a halt. We have gathered a lot of knowledge about the virus but there are still many gaps to fill. The non-structural-protein 3 (nsp3) represents one of these gaps in our knowledge. As the largest protein encoded by the coronaviruses genome, untangling its structure and function poses a huge task.

However, we can glean some knowledge around the specific function of SARS-CoV-2 nsp3 by looking at the virus‘s subfamily,  Orthocoronaviridae. As related viruses do share some common traits, academics were not completely unprepared when SARS-CoV-2 came. In the background, while only very few people were worried about a new corona virus, scientists around the world had been investigating the invisible enemy for decades. Building on this past work we look at the functions of proteins from other coronaviruse, like Murine Hepatitis Virus (MHV) and SARS-CoV, to learn more about how best to fight against SARS-CoV-2.

Fig. 1: The crystal structure of papain-like protease of SARS CoV-2 nsp3 (PDB-ID: 6w9c). Picture by Kristopher Nolte.

The gene which produces nsp3 lies on the open reading frame 1a (ORF1a) which encodes polyprotein 1a. The sequence for nsp3 of SARS-CoV is 1922 amino acids long and sandwiched between nsp2 and nsp4. It not only cleaves itself from the polyprotein by its papain-like protease domain but also nsp1 and nsp2. In coronaviruses, 18 different domains have been found in nsp3. Each virus type has 10 to 16 of these, out of which eight domains and two transmembrane regions form the conserved part of nsp3, which can be found in every coronavirus known to date [1]:

  1. Ubiquitin-like-domian (Ubl1)
  2. Ubiquitin-like-domain (Ubl2)
  3. Papain-like protease (PlPro)
  4. Macro domain / X domain (Mac)
  5. Hypervariable region / Glu-rich acidic domain (HVR)
  6. Transmembrane regions (TM1)
  7. Transmembrane regions (TM2)
  8. Ectodomain / Zinc finger domain (3ecto)
  9. Nidovirus-conserved domain of unknown function (Y1)
  10. Coronvirus specific carboxyl-terminal domain (CoV-Y)

To start our investigation on SARS-CoV-2 related structural data, we will look into the protein sequences of SARS-CoV and SARS-CoV-2 to learn where they are similar and where they differ.

Genetic Comparsion of SARS-CoV and SARS-CoV-2

SARS-CoV has 16 domains which span 1922 amino acids. The nsp3 protein of SARS-CoV-2 is a bit longer at 1945 amino acids. When compared to each other, there is an overall similarity of 75,97%.[2] In Addition to the ten conserved domains the nsp3 gene of SARS-CoV-2 codes for four domains:

Fig 1: Position of the nsp3 gene on the SARS-CoV-1 genome. Nsp3 is seperated into 12 domains. Picture by Thomas Splettstoesser, scistyle.com.
  1. Nucleic-acidic-binding domain (NAB)
  2. Betacoronavirus specific marker domain (βSM)
  3. Domain preceding Ubl2 and PL2pro (DPUP)
  4. Amphipathic helix 1 (AH1)

The two domains at the N-terminal end, Ubl1 and HVR, have an alignment of 79% and 64%, respectively. There seems to be a trend in coronaviridae for these domains to be poorly conserved, but Ubl1 still adopts the expected conserved fold.[4] If this proves true, could be analysed by comparing the sequence alignment and the structural similarity. It is unsurprising that the "high variable region" lives up to its name and shows the worst alignment of all. In the related MHV nsp3, this domain is dispensable for replication.[5]
It has been speculated that the Mac1 domain functions as an ADP ribose 1"-phosphatase, however, the effects of mutation in this region differ from virus to virus.[4] As a result, it is difficult to judge what significance the bad alignment of this domain will have on our understanding of SARS-CoV-2 without further research.

Table. 1: The domain amino acid range for SARS-CoV-1 was taken from Hilgenfeld et al.,2018 [2]. The range for SARS-CoV-2 was determined by taking the amino acid ranges of CoV-1 and using BLAST [2] to search for the best alignment of the domain sequences. Picture by Kristopher Nolte

The Mac1 domain, also known as the X-domain, is followed by two macrodomains which were originally called "SARS-CoV Unique domains" (SUD-N and SUD-M), but were renamed when they were found to not be unique to SARS-CoV. It has since been observed that only Mac3 plays an essential role in viral RNA replication[6], which could explain why Mac3 is one the most conserved domains in the alignment of SARS-CoV and SARS-CoV-2.

Pl2Pro and its neighbouring domain Ubl2 show some of the highest sequence alignments of all domain comaprisons. This could be explained by their essential function to cleave nsp3 from the polyprotein.
Little is known about the domains following Pl2Pro and our current structural knowledge is limited to a nuclear magnetic resonance (NMR) structure of NAB. While the structure and function of Y1 and CoV-Y from SARS-CoV-2 are currently unknown, their sequence, which compromises a fifth of the genome, is highly conserved in all coronaviruses.

Fig. 2: The location of the aligned domains of SARS-CoV (abbreviated CoV-1) and SARS-CoV-2 (abbreviated CoV-2) is shown over the length of nsp3 (TM1 = 1, TM2 = 2, AH1 =A). Picture by Tim Scharf.

In the second part of the series of Untangling Nsp3 of SARS-CoV-2 we will delve deeper into some structures of nsp3 of SARS-CoV-1 and SARS-CoV-2 and will try to find out how the differences in the sequence may have influenced some structures of the protein. For a further in-depth reading on the topics discussed here I highly recommend the sources below.  

Table. 2: For each domain and their respective counterpart in SARS-CoV-2 a BLAST search was contucted to search for fitting PDB-IDs. Last Update: 18.05.2020. The scripts and the PDB-data can be found in our Git repository [3]
Picture by Kristopher Nolte

Sources

  • [1] Lei J, Kusov Y, Hilgenfeld R. Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein. Antiviral Res. 2018 Jan;149:58-74. doi: 10.1016/j.antiviral.2017.11.001. Epub 2017 Nov 8. PMID: 29128390; PMCID: PMC7113668.
  • [2] Madden T. The BLAST Sequence Analysis Tool. 2002 Oct 9 [Updated 2003 Aug 13]. In: McEntyre J, Ostell J, editors. The NCBI Handbook [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2002-. Chapter 16. Available from: http://www.ncbi.nlm.nih.gov/books/NBK21097/
  • [3] https://github.com/thorn-lab/coronavirus_structural_task_force
  • [4] Benjamin W. Neuman, Bioinformatics and functional analyses of coronavirus nonstructural proteins involved in the formation of replicative organelles, Antiviral Research, Volume 135, 2016, Pages 97-107, ISSN 0166-3542, https://doi.org/10.1016/j.antiviral.2016.10.005.
  • [5] K.R. Hurst, C.A. Koetzner, P.S. Masters, Characterization of a critical interaction between the coronavirus nucleocapsid protein and nonstructural protein 3 of the viral replicase-transcriptase complex J. Virol., 87 (2013), pp. 9159-9172
  • [6] Kusov Y, Tan J, Alvarez E, Enjuanes L, Hilgenfeld R. A G-quadruplex-binding macrodomain within the "SARS-unique domain" is essential for the activity of the SARS-coronavirus replication-transcription complex. Virology. 2015 Oct;484:313-22. doi: 10.1016/j.virol.2015.06.016. Epub 2015 Jul 3. PMID: 26149721; PMCID: PMC4567502.

Für diesen Beitrag steht leider keine deutsche Übersetzung zur Verfügung.

Introduction

Before I started writing this article, the first thing I did was to google the name of my protein “NendoU” and was greeted by Figure 1. Needless to say, this is not what I was expecting. So, if you’re an anime fan looking for Riki Nendou, a dutiful yet dull-witted boy who likes helping people, particularly prioritising the weak, from The Disastrous Life of Saiki K: I’m afraid you have come to the wrong place. However, now that you’re here, maybe you’d like to learn about an interesting protein involved in SARS-CoV-2 viral replication? It can bind to and process six RNA molecules at a time! Six!

Figure 1: Not the NendoU you were looking for

After that interlude, I should get this blog post back on track! So… viruses and proteins. SARS-CoV-2 is an enveloped coronavirus with a non-segmented positive-sense RNA genome, in English this means the RNA genome in SARS-COV-2 can be used “as is” to make viral proteins without prior modification. SARS-CoV-2 has one of the largest RNA genomes among RNA viruses, made up of a replicase gene encoding non-structural proteins (nsps), as well as various structural and accessory genes. During viral replication, depending on the starting point (a.k.a. a ribosomal frame shift), the replicase gene can produce one of two poly-protein chains, which are then cleaved to produce 15-16 individual viral nsps (non-structural Proteins). These nsps then form a large membrane-bound replicase complex with multiple enzymatic activities, like a tiny viral Voltron.

What’s in a Name?

This blog post will focus on SARS-CoV-2 Nsp15, a nidoviral RNA uridylate‐specific endoribonuclease (NendoU). That is a very long and complicated name which conveys a lot of information, so let’s break it down into its individual parts, like when Voltron separates to become several small robots. It’s possible I’ve watched too many cartoons during lockdown:

  • Nidoviral – An order of RNA viruses which infect vertebrates and invertebrates.
  • RNA – Genetic material used to produce proteins
  • Uridylate-specific – Cuts Uridine (U) in RNA, not Cytosine (C), Adenine (A) or Guanine (G)
  • Endo – A Greek word meaning inside or within
  • Ribonuclease – An enzyme that cuts RNA into smaller pieces.

So, what’s in a name? Well, Nsp15 is a viral enzyme that likes to cut at uridine (a building block of RNA) in the middle of an RNA sequence. Quite a lot really. The final bit of the name “NendoU” goes into even more specifics on our protein, as it defines a common family of proteins which share certain traits. The first is that when Nsp15 cuts RNA, it gives a 2′‐3′ cyclic phosphodiester and 5′‐hydroxyl terminus. If we look at Figure 2, you’ll see a purple RNA chain made of two bases linked by an orange phosphate in the middle. When RNA is cleaved by Nsp15, a 2′‐3′ cyclic phosphodiester is made: in the two resulting molecules, the phosphate ion has been incorporated into a 5-membered ring (orange), and the other half of the RNA has a 5′‐hydroxyl, or and OH- group on another 5-membered ring (green). The second thing being a member of the NendoU family tells us is that the catalytic domain of the protein (the business end) is found on the C-terminal end of the protein (the latter half) as this is a shared trait within the NendoU family.

Figure 2: RNA Cleavage to give a 2′‐3′ cyclic phosphodiester and 5′‐hydroxyl terminus. Image generated in PyMOL using molecules made with Coot’s Ligand builder by Sam Horrell.

Domains

One Nsp15 monomer is made up of three distinct domains, the aforementioned N-terminal oligomerisation domain (green), a middle domain in… well, the middle (orange), and the catalytic NendoU domain at the C-terminal (purple, Figure 3b). Overall SARS-CoV-2 Nsp15 shows high sequence identity with SARS-CoV Nsp15 (88%) and, somewhat lower identity with MERS-CoV (51%) (Youngchang 2020), but the overall structural similarity is very high between the three viruses. For a more detailed breakdown of the secondary structure that makes up individual Nsp15 domains, check out our proteopedia entry!

Figure 3: Nsp15 monomer coloured by domain. Image generated in PyMOL using PDB 6X4I by Sam Horrell. 

Tertiary Structure

Nsp15 forms a double-ring hexamer made up of a dimer of trimers stabilised by an N-terminal oligomerisation domain. So, three monomers form a trimer which then binds another trimer of monomers. However, If you open a crystal structures this can be confusing as you might not be presented with the whole complex. A crystal is composed of an infinite array of identical (or near enough) molecules related to each other by symmetry. To eliminate the need to store an infinite number of atoms on your computer the PDB file gives you just enough of the crystal to define the unique part. You are then expected to remember that the rest are generated by symmetry. This subset is called the asymmetric unit. Should you want to try and generate the whole crystal you can try, but your computer will likely grind to a halt on its way to infinity (and beyond).

For most structures the asymmetric unit is the interesting part. Often, when the biologically relevant complex has symmetry itself, like Nsp15 does, only part of the complex will be present in the file from the PDB. In the case of the PDB model 6X4I the molecules of each trimer obey the crystal’s three-fold symmetry. The file you download contains two molecules, one monomer from each trimer, and you must generate the symmetry related molecules (shown in green and orange in figure 3) to build the entire complex. These six monomers all come together to form the active enzyme, a 100 Å long and 10-15 Å wide channel, open to solvent from the top, bottom, and three separate side openings in the middle of the hexamer (Figure 4). Formation of the hexamer has been shown to be essential for enzymatic activity, making the oligomerisation interfaces a potential target for structure-based drug design. I’m not sure if I should be proud or disappointed that I didn’t mention Voltron once back there.

Figure 4: The Structure of the Nsp15 hexamer showing a side on view generated by crystallographic symmetry (a) and a top down view (b) looking down the 10-15 Å wide channel. Image generated in PyMOL using PDB 6X4I by Sam Horrell. 

The Active Site

SARS-CoV-2 Nsp15 is a Mn2+ dependent endoribonuclease, meaning it relies on the coordination of manganese to perform the transesterification reaction (cutting RNA). Unfortunately, the structure of SARS-CoV-2 Nsp15 has not been solved with manganese present, but we do have a structure with 3’ uridine monophosphate in the active site (PDBID: 6X4I). It has been proposed that the presence of manganese help stabilise the active site and substrate, but it is yet to been seen. Based on sequence alignment against related enzymes from other viruses we know the active site is made up of six conserved residues that sit in a shallow groove between two β-sheets (His235, His250, Lys290, Thr341, Tyr343, and Ser294), as shown in Figure 5. His235, His250, and Lys290 are predicted to act as a catalytic triad, His235 as a general acid, and His250 as a base with Lys290 governing U specificity.

Figure 5: SARS-CoV-2 Nsp15 active site conserved residues without (top) and with (bottom) 3’ uridine monophosphate. β-sheets are coloured purple, α-helices in orange, loops and ligands in green and waters in red. Image by Sam Horrell generated in PyMOL using PDB 6X4I.

But What Does it do?

After all that we have a pretty clear picture of what Nsp15 NendoU looks like, but what does it actually do? The fact that it cuts RNA would immediately suggest a role in viral replication, but Nsp15 deficient coronaviruses are still able to replicate. So maybe not, at least it's not essential for replication. Another suggestion is that Nsp15 is involved in interfering with the hosts innate immune response, but other studies suggest this is independent of Nsp15 activity. Finally, it has been suggested that Nsp15 degrades viral RNA as a means of hiding viral infection from the host immune system. So why does coronavirus bother with Nsp15? I’m afraid we don’t exactly know yet, but we’re working on it.

With that I’m going to leave you with one final Voltron reference for making it to the end. Good job, you earned this.

Figure 6: A perfectly good use of my time. Nsp15 coloured as Voltron featuring the arm monomers (forest and firebrick), leg monomers (skyblue and yelloworange), chest/back monomers (aquamarine and grey70), all loops (black), waters (white), and bound ligands (cyan). Image by Sam Horrell generated in PyMOL using PDB 6X4I.

Alexander Matthew Payne und Binisha Karki

Einleitung

Haben Sie schon gehört, dass das Corona-Virus „mutiert“? Oder dass weltweit „mehr als ein Stamm“ dieses Virus existiert? Das klingt ziemlich erschreckend, nicht wahr? In Wirklichkeit mutiert aber wirklich alles - alle Organismen, angefangen bei Bakterien bis hin zum Menschen, verändern im Laufe der Zeit ihr Erbgut. Dies kann auch passieren, wenn die DNA (Deoxyribonucleic Acid, zu Deutsch: Desoxyribonukleinsäure) UV-Licht (wie dem der Sonne!) ausgesetzt wird oder während der Replikation der DNA. Bei diesem Vorgang verwendet eine Zelle einen der beiden DNA-Stränge als Vorlage für eine neue, komplementäre Kopie des anderen Strangs. Mutationen treten bei allen Lebewesen (und Viren) auf und sind die Triebkraft der Evolution. In diesem Beitrag befassen wir uns mit der Replikation von Coronaviren unter besonderer Berücksichtigung der beteiligten Proteine. 

Wie vermehrt sich das Coronavirus?

SARS-CoV-2 verwendet zur Kodierung seines Genoms nicht DNA, sondern einsträngige Ribonukleinsäure (Ribonucleic Acid, RNA) und wird deshalb der Klasse der „einsträngigen RNA-Viren“ zugeordnet. Aus diesem Grund muss das Virus zur Vervielfältigung seines Genoms einen anderen Weg beschreiten als „normale“ Zellen: Das für die Replikation der RNA zuständige Virusprotein wird als „RNA-abhängige RNA-Polymerase“ (RdRp) bezeichnet. Dieses Protein verwendet die virale RNA als Vorlage für neue Virus-RNA-Kopien; dabei reiht es einzelne Ribonukleotide wie Perlen auf einer Schnur aneinander. Dieser Vorgang wird als Polymerisation bezeichnet.

Eine Studie des AG Mors  an der Texas A&M University hat gezeigt, dass die SARS-CoV-2 RNA-Polymerase eine bemerkenswerte Ähnlichkeit mit der RNA-Polymerase von SARS-CoV (> 95 %) und MERS-CoV [1] hat, dem Virus, das das Middle East Respiratory Syndrome verursacht. Wir könnten also vielleicht von den Erkenntnissen aus der SARS- und MERS-Epidemien bei der Bekämpfung von SARS-CoV-2 profitieren. Mit kontinuierlichen Mitteln für die Coronavirus-Forschung in den letzten Jahren hätten wir vielleicht noch mehr über RdRp lernen können. In jedem Fall könnte RNA-Polymerase ein interessanter Ansatzpunkt für Medikamente zur Eindämmung von COVID-19 und zur Senkung der Sterblichkeitsrate sein…

Struktur der RNA-abhängigen RNA-Polymerase

Um ein Medikament so zu optimieren, dass es an dieses Protein bindet und es blockiert, muss man zunächst die Struktur von RdRp bestimmen und seine Funktionsweise umfassend verstehen – und in den vergangenen Monaten wurden hierzu verschiedene Strukturen der SARS-CoV-2 RNA-Polymerase aufgeklärt. 

Eine interessante Struktur zeigt die RNA-Polymerase in Aktion: dabei ist zu erkennen, wie ein RNA-Strang verlängert wird (siehe Abbildung 1). Es ist deutlich zu sehen, dass die Polymerase einen Komplex mit kleineren Proteinen, den so genannten Nichtstrukturproteinen 7 und 8 (nsp7 und nsp8), bildet. Diese Proteine stabilisieren die Bindung der RNA-Polymerase an die RNA-Vorlage und erhöhen die „Prozessivität“, also die Zeit, die das Enzym an der Vorlage kleben bleibt, bis es sich wieder ablöst. [3]

Abbildung 1. Vorder- und Rückansicht der Struktur mit RNA und den zwei Cofaktoren nsp7 und nsp8 während der Verlängerung durch RdRp (PDB ID: 6yyt). Zwei nsp8-Exemplare (grau) bilden seitliche Stützen zur Stabilisierung der RNA (orangefarben). Ein nsp8-Exemplar bindet direkt an die Polymerase (blau), während das andere nsp7 (rosa) zur Verankerung an einer zweiten Stelle der Polymerase nutzt. Bild von alex Payne, Coronavirus Structural Task Force.
Abbildung 1. Vorder- und Rückansicht der Struktur mit RNA und den zwei Cofaktoren nsp7 und nsp8 während der Verlängerung durch RdRp (PDB ID: 6yyt). Zwei nsp8-Exemplare (grau) bilden seitliche Stützen zur Stabilisierung der RNA (orangefarben). Ein nsp8-Exemplar bindet direkt an die Polymerase (blau), während das andere nsp7 (rosa) zur Verankerung an einer zweiten Stelle der Polymerase nutzt. Bild von Alex Payne, Coronavirus Structural Task Force.
Abbildung 1. Vorder- und Rückansicht der Struktur mit RNA und den zwei Cofaktoren nsp7 und nsp8 während der Verlängerung durch RdRp (PDB ID: 6yyt). Zwei nsp8-Exemplare (grau) bilden seitliche Stützen zur Stabilisierung der RNA (orangefarben). Ein nsp8-Exemplar bindet direkt an die Polymerase (blau), während das andere nsp7 (rosa) zur Verankerung an einer zweiten Stelle der Polymerase nutzt. Bild von Alex Payne, Coronavirus Structural Task Force.

In der Mitte des Proteins befindet sich das „aktive Zentrum“, in dem der eigentliche Synthesevorgang stattfindet. Die Aminosäuren der Polymerase im aktiven Zentrum ermöglichen eine besonders hohe Polymerisationsrate. Die Polymerase kann bis zu 100 Nukleotide pro Sekunde aneinanderreihen [3]. RNA-Moleküle, die für die Produktion der RNA-Kette benötigt werden, gelangen durch ein Fenster in das aktive Zentrum. An dieser Stelle können nun antivirale Medikamente ansetzen:

Die dritte Ansicht zeigt den Zugang zum aktiven Zentrum, durch das neue Nukleotide ins Innere gelangen. bild von Alex Payne, Coronavirus Structural Task Force.
Die dritte Ansicht zeigt den Zugang zum aktiven Zentrum, durch das neue Nukleotide ins Innere gelangen. Bild von Alex Payne, Coronavirus Structural Task Force.

Wie können antivirale Medikamente RNA-abhängige RNA-Polymerase hemmen?

Remdesivir ist das von der FDA zugelassene Medikament des Herstellers Gilead, welches im Fokus der Suche nach einem Heilmittel gegen COVID-19 steht. Remdesivir (das mit dem Entwicklungscode GS-5734 unter dem Markennamen Veklury vertrieben wird) ist ein „Nukleotid-Analogon“, also eine synthetisch hergestellte Substanz, die in Form und Chemie den Bausteinen von RNA und DNA (Nukleotiden) ähnelt (siehe Abbildung 4). 

Remdesivir wurde ursprünglich als generelles antivirales Medikamente entwickelt und zeigte in Labortests an Zellen und in klinischen Tests an Affen seine Wirksamkeit gegen das Ebolavirus [4]. Doch ist die Forschung dahingehend noch sehr jung und die Mühlen der Wissenschaft mahlen so langsam, dass bis zur COVID-19-Pandemie keine groß angelegten klinischen Studien mit Remdesivir durchgeführt wurden. Wissenschaftler und Ärzte wollten das Medikament schnell gegen COVID-19 einsetzen, um zu sehen, ob es auch hier half. Sowohl die USA als auch Japan erteilten dem Medikament bereits im Mai eine „Zulassung für die Anwendung in Notfallsituationen“ für Patienten mit schwerem COVID-19-Verlauf [5], [6].Woraufhin Remdesivir im Juli von der Europäischen Arzneimittelbehörde eine „bedingte Zulassung“ erhielt (welche für Medikamente vergeben wird, die eine medizinische Versorgungslücke schließen, aber über nicht genügend Daten für eine normale Zulassung verfügen). Damit kann Remdesivir bis zum nächsten Jahr bei Patienten mit schweren COVID-19-Verläufen eingesetzt werden [7].

Wie ist es denn aber möglich, dass ein Medikament gegen Ebola, Influenza oder eine andere Viruserkrankung auch bei COVID-19 hilft? Ich habe mir diese Frage immer und immer wieder gestellt, als die Studien über die Medikamentenwirksamkeit veröffentlicht wurden – und ich stand damit ganz sicher nicht alleine...

Die simple Antwort lautet: Alle diese Viren müssen ihr RNA-Genom vervielfältigen und verwenden hierzu das im Wesentlichen gleiche Werkzeug, nämlich eine RNA-abhängige RNA-Polymerase. Und alle Medikamente aus der Gruppe der Nukleotid-Analoga bemühen den gleichen Trick: sie geben sich als Ribonukleotide (also die eingangs beschriebenen „Perlen“) aus und gelangen so in das aktive Zentrum der RNA Polymerase. Im Inneren angekommen, docken sie dauerhaft am aktiven Zentrum an und bringen die Polymerase-Maschine zum Stillstand. Weil dieser Trick bei jeder viralen RNA-Polymerase funktionieren sollte, könnte man diese Wirkstoffe bei allen RNA-Viren als antivirale Medikamente einsetzen. In der Praxis sieht es natürlich etwas anders aus, weil zwischen den verschiedenen RNA-Polymerasen eben doch Unterschiede bestehen. Aber es ist ein guter Ausgangspunkt. Wenn wir über einsatzbereite allgemeine Virostatika gegen SARS-CoV-2 verfügen, sind wir vermutlich besser für einen künftigen Coronavirus-Ausbruch gerüstet!

Remdesivir Meme.
Wahrscheinlich sehen wir alle nur, was wir sehen wollen. Bild von Alex Payne, Coronavirus Structural Task Force.

Abbildung 3. Wahrscheinlich sehen wir alle nur, was wir sehen wollen.

Die Chemie von Remdesivir

In seiner Struktur ähnelt Remdesivir dem Nukleotid Adenosin, doch einige ausgeklügelte chemische Anhänge machen es zu einem besonders raffinierten Medikament (vielen Dank an die medizinische Chemie!). Wird Remdeivir injiziert, gelangt es in unsere Zellen, die es als Fremdkörper erkennen und zu verdauen versuchen. Dabei entfernen die Zellen allerdings nur die chemischen Anhänge. Was übrig bleibt, halten sie fälschlicherweise für ein normales Adenosin. In infizierten Zellen bindet nun die virale RNA-abhängige RNA-Polymerase dieses Moleküle und baut es anstelle von Adenosinmolekülen in den neu synthetisierten RNA-Strang ein. Remdesivir wird Teil der RNA, blockiert die Polymerase und verhindert, dass das Virus weitere Kopien seines Erbguts anfertigen kann. Dadurch kommt die Virusreplikation letztlich zu einem Stillstand und hilft dem Patienten, das Virus zu bekämpfen.

Abbildung 4. (A) Der rote Bereich macht Remdesivir so wirkungsvoll, weil er dem Wirkstoff Zugang aus dem Blut in die menschlichen Zellen verschafft, aber für die Blockade der Polymerase nicht gebraucht wird. Remdesivir wurde speziell so konzipiert, dass menschliche Zellen versuchen, es zu verstoffwechseln, sobald sie es in ihrem Inneren bemerken. Dabei spalten sie den roten Bereich ab, wodurch es dem Adenosinnukleotid zum Verwechseln ähnlich wird. (B) Das veranlasst die Zelle, dem Molekül zwei weitere Phosphatgruppen hinzuzufügen, so dass die Triphosphat-Form entsteht. In dieser aktiven Form ähnelt das Molekül ATP (C) und wird anstelle von ATP in die wachsende RNA-Kette integriert. Der blau markierte Teilbereich an der Seite ist eine so genannte 1’-Cyanogruppe und dafür verantwortlich, dass sich die RNA untrennbar mit der Polymerase verbindet und diese effektiv blockiert; außerdem ist der Ring unterschiedlich (ebenfalls blau). Bild von Alex Payne, Coronavirus Structural Task Force.
Abbildung 4. (A) Der rote Bereich macht Remdesivir so wirkungsvoll, weil er dem Wirkstoff Zugang aus dem Blut in die menschlichen Zellen verschafft, aber für die Blockade der Polymerase nicht gebraucht wird. Remdesivir wurde speziell so konzipiert, dass menschliche Zellen versuchen, es zu verstoffwechseln, sobald sie es in ihrem Inneren bemerken. Dabei spalten sie den roten Bereich ab, wodurch es dem Adenosinnukleotid zum Verwechseln ähnlich wird. (B) Das veranlasst die Zelle, dem Molekül zwei weitere Phosphatgruppen hinzuzufügen, so dass die Triphosphat-Form entsteht. In dieser aktiven Form ähnelt das Molekül ATP (C) und wird anstelle von ATP in die wachsende RNA-Kette integriert. Der blau markierte Teilbereich an der Seite ist eine so genannte 1’-Cyanogruppe und dafür verantwortlich, dass sich die RNA untrennbar mit der Polymerase verbindet und diese effektiv blockiert; außerdem ist der Ring unterschiedlich (ebenfalls blau). Bild von Alex Payne, Coronavirus Structural Task Force.
Abbildung 5. Struktur von Remdesivir (cyan) im aktiven Zentrum der RNA-abhängigen RNA-Polymerase. Der Zugang, durch den neue Nukleotide in das Innere gelangen, befindet sich links unten im Bild. Der als Vorlage dienende RNA-Strang (orange) erscheint von rechts unten. Remdesivir wird durch Wasserstoffbrückenbindungen mit Uracil zu einem Basenpaar verbunden. Bild von Alex Payne, Coronavirus Structural Task Force.
Abbildung 5. Struktur von Remdesivir (cyan) im aktiven Zentrum der RNA-abhängigen RNA-Polymerase. Der Zugang, durch den neue Nukleotide in das Innere gelangen, befindet sich links unten im Bild. Der als Vorlage dienende RNA-Strang (orange) erscheint von rechts unten. Remdesivir wird durch Wasserstoffbrückenbindungen mit Uracil zu einem Basenpaar verbunden. Bild von Alex Payne, Coronavirus Structural Task Force.

Ein anderes Medikament, das die RNA-Polymerase-Aktivität hemmt, ist Favipiravir, das unter den Markennamen Avigan, Abigan und FabiFlu vertrieben wird. Favipiravir wurde von Toyama Chemical Co. Ltd. in Japan entdeckt und wirkt ähnlich wie Remdesivir, allerdings imitiert es statt eines Adenosin-Nukleotids ein Guanosin- Nukleotid [8]. Dieses Medikament wurde bereits 2014 in Japan für den Einsatz bei resistenten Fällen von Influenza A und B zugelassen, wartet in den USA (erst in der klinischen Phase II und III) und in Großbritannien allerdings noch auf seine Freigabe [9]. Außerdem wird das Medikament in 43 Ländern für den Einsatz getestet. Die Zulassung von Favipiravir als COVID-19-Medikament erfolgte in einigen Ländern sehr rasch. So erteilte China am 15. März 2020 die Freigabe, Russland am 3. Juni 2020 und Indien am 20. Juni 2020 [10], [11]. Andere Länder, wie Japan, befinden sich noch in unterschiedlichen klinischen Teststufen und die Ergebnisse werden bis Ende Juli 2020 erwartet [10].

Heißt das, wir haben ein Heilmittel gegen SARS-CoV-2?

Leider noch nicht. Zwar hat Remdesivir die klinischen Studien mit beispielloser Geschwindigkeit durchlaufen, doch ist noch mehr Arbeit nötig, um sicher sein zu können, dass es unbedenklich und vorallem auch wirksam ist. Insgesamt wurden noch nicht besonders viele Menschen mit Remdesivir behandelt, so dass wir nicht wirklich sagen können, welche Nebenwirkungen es haben kann; zuletzt gab es Hinweise auf eine Schädigung von Leber und Niere [12, 13]. Die häufigsten Nebenwirkungen sind Übelkeit (10% bzw. 9% der Patienten), Verdauungsstörungen (7 %) und erhöhte Transaminasewerte (6 % bzw. 8 %). In einer Studie mussten 3,6 % der Patienten in einer 10-Tage-Studie die Therapie aus letzterem Grund abbrechen. Allerdings können auch schwere Virusinfektionen Leberschäden verursachen. Die Trennung der beiden Ursachen stellt eine große Herausforderung dar. Außerdem ist Remdesivir kein Allheilmittel. In einer Studie verkürzte sich unter Remdesivir die Genesungszeit von 15 auf 11 Tage; bei Patienten mit leichter bis mittelschwerer Erkrankung zeigte es jedoch keine Wirkung und bei Patienten, die bereits beatmet wurden, konnte kein Unterschied in der mittleren Genesungszeit festgestellt werden [14]. Da das Medikament über mehrere Tage als Infusion verabreicht werden muss, gibt es ein ziemlich kleines Zeitfenster, in dem Remdesivir tatsächlich helfen kann. 

Wie auch Remdesivir hat Favipiravir seine eigenen Nebenwirkungen. Dazu zählen unter anderem Die Schädigung von Leber und Niere, erhöhte Harnsäurewerte, Hautallergien usw. [15]. Aus diesem Grund soll es bei Patienten mit schwerer Diabetes und schweren Herzerkrankungen nicht eingesetzt werden. Zudem ist es für schwangere Frauen nicht geeignet, da es Missbildungen oder ein Absterben des Fötus verursachen kann. Es hat sich gezeigt, dass Favipiravir nur im Anfangsstadium einer SARS-CoV-2-Infektion wirkt, wenn das körpereigene Immunsystem noch gut funktioniert. Bei schwer erkrankten Patienten kann es einen „Zytokinsturm“ auslösen (bei dem das Immunsystem lebensbedrohlich entgleist). Ein universelles Medikament gegen COVID-19 müsste aber für alle Menschen sicher sein. 

Diese Medikamente sind jedoch besser als nichts. Und indem Wissenschaftler die beteiligten Mechanismen verstehen lernen, können sie vorhandene Medikamente zum Nutzen aller weiter verbessern. Während die meisten an der RNA-Polymerase ansetzenden „allgemeinen Virostatika“ bei SARS-CoV-2 versagt haben, war Remdesivir hingegen manchmal erfolgreich. Die Wissenschaft vermutet, dass seine begrenzte Wirksamkeit an einem SARS-CoV-2-eigenen Korrekturprotein namens Exonuklease liegt. Sobald die RNA-Polymerase neue RNA gebildet hat, prüft die Exonuklease diese auf Richtigkeit. Eine Studie hat gezeigt, dass ein anderer RNA-simulierender Arzneistoff namens Ribivarin unmittelbar nach der RNA-Synthetisierung erkannt und anschließend durch die Exonuklease wieder aus der RNA entfernt wird. Die Reparaturmechanismen scheinen für Remdesivir jedoch nicht gut zu funktionieren, was erklärt, warum es erfolgreicher ist als andere Medikamente [17], [18].

Wie nsp14 die Integrität und Virulenz von SARS-CoV-2 aufrechterhält, lesen Sie in einem zukünftigen Blog-Eintrag!

Haben wir das nicht alles schon einmal erlebt? Bild von Alex Payne, Coronavirus Structural Task Force.

Abbildung 6. Haben wir das nicht alle schon erlebt?

Empfohlene Strukturen

Wer die Strukturen eingehender zu studieren möchte, findet diese in unserem GitHub-Repository, zusammen mit Informationen zur Validierung und, soweit vorhanden, zu verbesserten Strukturen. Für einen hochauflösenden Vergleich des aktiven Zentrums mit und ohne Remdesivir wurden 7BV2 bzw. 7BV1 zusammen bei 2,5 bzw. 2,8 Å Auflösung veröffentlicht. In der wachsenden Struktur des oben gezeigten Komplexes (6YYT) sind sowohl die Polymerase als auch die Kofaktoren und die RNA mit wenig „fehlender“ Dichte und einer Auflösung von 2,9 Å sehr gut aufgelöst. Sie ist wahrscheinlich 6M71 und 7BTF vorzuziehen, die mit einer ähnlichen Auflösung veröffentlicht wurden, wobei allerdings der Komplex weniger detailliert ist und keine RNA vorliegt. Für Interessierte: 7C2K und 7BZF (bei 2,93 Å und 3,26 Å) zeigen den an die RNA gebundenen Komplex vor und nach der Translokation.


Quellen

[1] J. S. Morse, T. Lalonde, S. Xu, and W. R. Liu, “Learning from the Past: Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019-nCoV,” ChemBioChem, vol. 21, no. 5, pp. 730–738, Mar. 2020, doi: 10.1002/cbic.202000047.

[2] H. S. Hillen, G. Kokic, L. Farnung, C. Dienemann, D. Tegunov, and P. Cramer, “Structure of replicating SARS-CoV-2 polymerase,” Nature, May 2020, doi: 10.1038/s41586-020-2368-8.

[3] W. Yin et al., “Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir,” Science, p. eabc1560, May 2020, doi: 10.1126/science.abc1560.

[4] R. T. Eastman et al., “Remdesivir: A Review of Its Discovery and Development Leading to Emergency Use Authorization for Treatment of COVID-19,” ACS Cent. Sci., May 2020, doi: 10.1021/acscentsci.0c00489.

[5] O. of the Commissioner, “Coronavirus (COVID-19) Update: FDA Issues Emergency Use Authorization for Potential COVID-19 Treatment,” FDA, May 04, 2020. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-issues-emergency-use-authorization-potential-covid-19-treatment (accessed Jul. 08, 2020).

[6] A. Sternlicht, “Japan Approves Remdesivir For Use On Severe COVID-19 Patients,” Forbes. https://www.forbes.com/sites/alexandrasternlicht/2020/05/07/japan-approves-remdesivir-for-use-on-severe-covid-19-patients/ (accessed Jul. 08, 2020).

[7] D. CZARSKA-THORLEY, “First COVID-19 treatment recommended for EU authorisation,” European Medicines Agency, Jun. 25, 2020. https://www.ema.europa.eu/en/news/first-covid-19-treatment-recommended-eu-authorisation (accessed Jul. 10, 2020).

[8] E. De Clercq, “New Nucleoside Analogues for the Treatment of Hemorrhagic Fever Virus Infections,” Chem. Asian J., vol. 14, no. 22, pp. 3962–3968, Nov. 2019, doi: 10.1002/asia.201900841.

[9] K. Shiraki and T. Daikoku, “Favipiravir, an anti-influenza drug against life-threatening RNA virus infections,” Pharmacol. Ther., vol. 209, p. 107512, May 2020, doi: 10.1016/j.pharmthera.2020.107512.

[10] T. Hornyak, “Japan sending Fujifilm’s flu drug favipiravir to over 40 countries for Covid-19 trials,” CNBC, May 04, 2020. https://www.cnbc.com/2020/05/04/fujifilms-flu-drug-favipiravir-sent-to-43-nations-for-covid-19-trials.html (accessed Jul. 14, 2020).

[11] G. P. Ltd, “Glenmark Becomes the First Pharmaceutical Company in India to Receive Regulatory Approval for Oral Antiviral Favipiravir, for the Treatment of Mild to Moderate COVID-19.” https://www.prnewswire.com/in/news-releases/glenmark-becomes-the-first-pharmaceutical-company-in-india-to-receive-regulatory-approval-for-oral-antiviral-favipiravir-for-the-treatment-of-mild-to-moderate-covid-19-855346546.html (accessed Jul. 14, 2020).

[12] Goldman, J. D. et al. Remdesivir for 5 or 10 Days in Patients with Severe Covid-19. N. Engl. J. Med. (2020) doi:10.1056/NEJMoa2015301

[13] Remdesivir Safety Forecast: Watch the Liver, Kidneys | MedPage Today. https://www.medpagetoday.com/infectiousdisease/covid19/86582

[14] J. H. Beigel et al., “Remdesivir for the Treatment of Covid-19 — Preliminary Report,” N. Engl. J. Med., vol. 0, no. 0, p. null, May 2020, doi: 10.1056/NEJMoa2007764.

[15] Sandhya Ramesh, “Favipiravir, Japanese drug that’s the new Covid treatment hope your chemist will soon stock,” ThePrint, Jun. 25, 2020. https://theprint.in/health/favipiravir-japanese-drug-thats-the-new-covid-treatment-hope-your-chemist-will-soon-stock/447987/ (accessed Jul. 14, 2020).

[16] F. Ferron et al., “Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA,” Proc. Natl. Acad. Sci., vol. 115, no. 2, pp. E162–E171, Jan. 2018, doi: 10.1073/pnas.1718806115.

[17] C. J. Gordon, E. P. Tchesnokov, J. Y. Feng, D. P. Porter, and M. Gotte, “The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus,” J. Biol. Chem., Feb. 2020, doi: 10.1074/jbc.AC120.013056.

[18] L. Zhang et al., “Role of 1’-Ribose Cyano Substitution for Remdesivir to Effectively Inhibit both Nucleotide Addition and Proofreading in SARS-CoV-2 Viral RNA Replication,” bioRxiv, p. 2020.04.27.063859, Apr. 2020, doi: 10.1101/2020.04.27.063859.

Das Coronavirus unkompliziert selbst drucken und zusammenbauen – wir haben ein 3D-Modell dafür entworfen!
Abhängig vom User und dem jeweiligen 3D-Drucker sind die Details natürlich unterschiedlich. Die Methoden, die wir angewandt habenkönnen aber als Anhaltspunkt dienen. Nutzer ohne eigenen 3D-Drucker können die STL-Daten aber auch dafür verwenden, den Druck bei einem externen Dienstleister zu beauftragen. Wir hoffen, mit diesem Projekt nicht nur private Nutzer zu erreichen, sondern auch bessere Möglichkeiten für die Lehre und das öffentliche Verständis des Virus zu schaffen.

Unser Entwurf basiert auf aktuellesten wissenschaftlichen Erkenntnissen bezüglich der Proteinstrukutur und Größenverhältnisse. Mehr dazu hier.

Mit dem ausgedruckten und zusammengebauten Modell bekommt man eine Vorstellung, wie das Virion aussehen würde, wenn es um eine Million vergrößert wäre (1 mm des Models stellt 1 nm (10 Å) dar). Die RNA, das Erbgut des Virus, wäre dann zehn Meter lang und einen Millimeter dick.

Zusätzlich haben wir ein Modell eines menschlichen Antikörpers im selben Maßstab entworfen, welches zusätzlich zu den Strukuren des Virions gedruckt und je nach Wunsch an das Spike-Protein angehägt werden kann. Um das Drucken, Bemalen und Zusammenbauen zu erleichtern, haben wir die Virusstruktur in vier einzelne Komponenten zerlegt:

Bis jetzt wurden die Strukturen erfolgreich auf verschiedenen Schmelzschicht-Druckern (FDM), einem Rostok MAX v2 und einem Prusa I3 MK3 Drucker getestet. Mit anderen Methoden, wie Stereolithographie, wäre eine noch höhere Qualität durchaus möglich.

Jeder Teil ist im STL-Format verfügbar und sollte mit jeder geeigneten Slicer-Software druckbar sein.

Beim Zusammenbauen und Bemalen des fertigen Drucks geht man am besten nach eigenem Gutdünken vor. Die exakten Details unterschieden sich schließlich je nach Equipment und nach den Einstellungen.
Wir zeigen hier trotzdem unseren Aufbau in knapper Zusammenfassung.

Druck der Komponenten:

Der erste Schritt ist das Drucken der einzelnen Bestandteile. Die Virion-Kugel ist schnell gedruckt, da durch die flache Oberfläche keine weiteren Träger oder Verbindungen benötigt werden.
Dieser Teil kann mit einem Minimum an Füllung und Trägern gedruckt werden, aus Gründen der Stabilität empfehlen wir jedoch eine Füllung von mindestens 10%.

Die anderen Teile (Spikeproteine und Antikörper) stellen hierbei eine größere Herausforderung dar.
Das Spikeprotein muss für das fertige Model mindestens 95mal gedruckt werden. Hierzu können entweder individuelle Einstellungen genutzt oder die 25x STL-Datei 4mal gedruckt werden.
Es ist empfehlenswert das Spike-Protein mit dem Kopf in Richtung Druckbett zu drucken. Das erhöht die Stabilität und benötigt weniger Verbindungen und Vernetzungen zwischen den einzelnen Trägern.
Diese müssten sonst mit Fingerspritzengefühl vom sensiblen Stamm der Spikes entfernt werden. Wie viele Träger zusätzlich hinzugefügt werden, kann je nach Nutzer und der jeweiligen Situation entschieden werden.

Ein Dual-Extruder-Drucker ist für das Herstellen der Spikes ideal, da die stabilisierenden Verbindungen zwischen den Spikes aus einem wasserlöslichen Plastik gedruckt und somit einfach zu entfernen sind. Auf jeden Fall erzeugt ein individueller Druck der Spikes oder zumindest eine geringere Anzahl pro Block ein besseres Ergebnis. Die Verarbeitung dieser Spikes ist dann einfacher, auch wenn der Druck zeitaufwändiger wird. Generell muss ein guter Kompromiss zwischen der Druckgenauigkeit, der Geschwindigkeit und dem Aufwand beim Aufarbeiten der Modelle gefunden werden.

Die Details dieses Prozesses hängen vor allem von der Art des Druckers, dem Aufbau und der Drucktechnik ab. Wir nutzten die bekannteste Technik: Schmelzschicht-Druck (FDM), als Plastik wurde Polylactide (PLA) verwendet, was die folgende Aufreinigung erleichterte.

Aufarbeitung

Um die Objekte möglichst sauber zusammensetzen und bemalen zu können, ist eine Aufarbeitung der Einzelteile notwendig. Die Stabilisierungsstücke können mit einer Zange entfernt werden, während kleinere Artefakte einen Abschliff benötigen. Auch ein Zahnstocher hat sich als hilfreich erwiesen.

Links die Virion- und Spike-Protein- Oberflächen nach dem Druck, mit erkennbaren Artefakten und Plastik-Fadenbildung . Auf der rechten Seite das mit Ethylacetat behandelte Virion mit einer glatten Oberfläche. Bilder von Ferdinand Kirsten, Matt Reeves.
Links die Virion- und Spike-Protein- Oberflächen nach dem Druck, mit erkennbaren Artefakten und Plastik-Fadenbildung . Auf der rechten Seite das mit Ethylacetat behandelte Virion mit einer glatten Oberfläche. Bilder von Ferdinand Kirsten, Matt Reeves.

Für PLA erwies sich Ethylacetat als die beste Reinigungsmethode um Oberflächen zu glätten und Überbleibsel der Träger zu entfernen. Das Ethylacetat löst das Plastik auf und zerstört somit kleine Unebenheiten auf den Oberflächen, wenn es bedacht angewendet wird. Hierbei kann unterschiedlich vorgegangen werden, wobei die schonendste Methode das Aussetzen in eine Ethylacetat-Dampf Umgebung in einem geschlossenen Gefäß ist. Es entsteht eine glatte Oberfläche mit genauen Details, der Prozess nimmt jedoch oft viele Stunden oder sogar einige Tage in Anspruch.

Die schnellere Methode , die ebenfalls zufriedenstellende Resultate liefert, ist das Eintunken der Objekte in Ethylacetat für 10-30 Sekunden. Anschließend werden sie abgetupft und zum Trocknen ausgelegt. Oft ist ein zweiter Reinigungsgang nötig. Für die größeren Virusteile kann es helfen ein Tuch, welches mit Ethylacetat getränkt ist, bis zum gewünschten Ergebnis über die Oberfläche zu reiben. Mit dieser Methode lassen sich die beiden Virionhälften auch hervorragend zusammenkleben. Eine kleine Menge Ethylacetat wird auf jeder Fläche der Hälften verteilt und die Hälften zusammengedrückt, bis sie zu einem einzigen Stück verschmolzen sind. Auch die Naht kann dann mit einem Ethylacetat-Tuch gut geglättet werden. Hierfür stellt Aceton-freier Nagellackentferner eine ausgezeichnete, frei käufliche Alternative dar, die die gleichen Ergebnisse erzielen dürfte. Bei der Handhabung dieser Chemikalien sollte immer geeignete Schutzausrüstung getragen werden ( Schutzbrille, Handschuhe etc.).

Spike-Proteine Frisch nach dem Druck (links) und nach der Aufarbeitung mit Ethylacetat (rechts), Bild von Ferdinand Kirsten.
Spike-Proteine frisch nach dem Druck (links) und nach der Aufarbeitung mit Ethylacetat (rechts), Bild von Ferdinand Kirsten.

Übrigens: Aceton erzielt für das andere häufig genutzte Druckmaterial, Acrylnitril-Butadien-Styrol (ABS) die gleiche Wirkung wie Ethylacetat für PLA.

Bemalen und Zusammensetzen

Wie beim Druck, sind auch das Bemalen und die jeweiligen Malmethoden dem Nutzer individuell überlassen. Hier zeigen wir die Variante des Würzburger Modells, bei der wir versucht haben, der Illustration von Thomas Splettstösser möglichst treu zu bleiben.

Am Computer erstelltes Bild des Virusses von Thomas Splettstoesser (links) und das ferige 3D-Modell des Thorn Labs (rechts).
Am Computer erstelltes Bild des Virusses von Thomas Splettstoesser (links) und das ferige 3D-Modell des Thorn Labs (rechts).

Die Einzelteile wurden zu Beginn mit einem Primer überzogen, um die Farbe besser an das Modell zu binden. Außerdem wirkt dieser wie eine gleichmäßige Grundierung. Beim Auftragen des Primers und der Nutzung einer Airbrush muss auf die Sicherheit geachtet werden, um das Einatmen der schädlichen Substanzen zu vermeiden. Ein gut belüfteter Raum, ein Abzug und eine Zirkulation weg vom Körper sind zu empfehlen. Das Tragen von Handschuhen, einer Schutzbrille und einer Maske sollte für zusätzlichen Schutz sorgen.

In unserem Fall wurde das Modell hauptsächlich mit einer Airbrush bemalt und wir empfehlen diese Methode für die kleinen Oberflächendetails und komplexen Strukturen. Natürlich können auch alle Teile mit dem Pinsel angemalt werden, dies ist jedoch deutlich zeitaufwendiger und erfordert genaueres Arbeiten. Alle genutzen Farben, Verdünner, Primer und Lack sind von Citadel-Painting. Hier eine Liste der genutzten Farben und Amterisleien die für unser Modell verwendet wurden:

  • Grün: “Moot green”
  • Gelb: “Yriel Yellow”
  • Grau: “Dawnstone”
  • Braun: “Baneblade Brown”
  • Dunkelbraun: “Doombull Brown”
  • Hellblau (Aqua): “Gauss Blaster Green”
  • Türkis: “Kabalite Green”
Die Spike-Proteine Sortiert nach Farben (links oben), nur mit Grundierung (links unten) und nach dem Hervorheben mit Limettengrün (rechts). Bild von Kristopher Nolte.
Die Spike-Proteine Sortiert nach Farben (links oben), nur mit Grundierung (links unten) und nach dem Hervorheben mit Limettengrün (rechts). Bild von Kristopher Nolte.

Um den Effekt einer natürlichen Lichtquelle zu erzeugen wurden die Spikes in vier Gruppen unterteilt und unterschiedlich hell bemalt.
Wenn das Modell nicht für die feste Ausstellung auf einer Halterung oder Ähnlichem geplant ist, ist dieser Schritt nicht notwendig. Jedes Spike-Protein wurde mit einem helleren Limettengrün hervorgehoben (Highlighting), um einen stärkeren Kontrast zu erzeugen und die Oberfläche besser zu differenzieren. Anschließend wurde das Highlighting mit einem "Dry-brush" der hellblauen (Aqua) Farbe vollendet.

Virion-Kugel (oder auch liebevoll Kartoffel genannt) mit hervorgehobenen Hüllenproteinen (links) und nach der Grundierung (rechts). Bild von Kristopher Nolte.
Virion-Kugel (oder auch liebevoll Kartoffel genannt) mit hervorgehobenen Hüllenproteinen (links) und nach der Grundierung (rechts). Bild von Kristopher Nolte.

Nachdem das Virusmodell samt Spikes bemalt war, wurde die Farbe mit Glanzlack und einem matten Finish versiegelt. Dieser Schritt ist ebenfalls optional, aber zum Schutz gegen Abnutzung der Farben bei häufiger Handhabung des Modells zu empfehlen.

Nach all diesen Schritten kommt es endlich zum langersehnten Zusammensetzen der Einzelteile. Falls die Spike Proteine verschiedene Highlights bekommen haben, ist darauf zu achten, sich auf eine „Lichtquelle“ festzulegen und die Spikes dementsprechend anzuordnen und am Modell zu befestigen (Auf einem Ständer: Unten dunkler, nach oben heller). Um die Spikes an ihrer Position zu befestigen haben wir normalen Modellbaukleber verwendet. Starker Bastel-Kleber oder Ethylacetat können hierfür ebenfalls benutzt werden, sowie kleine Magnete für besondere Tüftlerinnen und Tüftler. Da unser Modell auf einer Halterung präsentiert werden soll, wurde hierfür ein Loch an der Unterseite des Modells freigelassen, in dem dann die Stange befestigt werden kann.

Zusammensetzen des Modells mit Kleber. Die Spike-Proteine werden in den dafür vorgesehenen Löchern befestigt. Bild von Kristopher Nolte.
Zusammensetzen des Modells mit Kleber. Die Spike-Proteine werden in den dafür vorgesehenen Löchern befestigt. Bild von Kristopher Nolte.

Hoffentlich hat euch unser kleines Abenteuer gefallen und inspiriert, euch an euer eigenes 3D-Coronamodell zu wagen. Die beschriebenen Arbeitsschritte haben insgesamt etwas mehr als eine Woche in Anspruch genommen. Das Drucken dauert etwa einen Tag.  Aufreinigung und Verfeinerung benötigten mehr als zwei Tage und das Bemalen des Modells ein ganzes Wochenende.

Die Dateien sind öffentlich auf Thingiverse verfügbar und das Modell ist lizensiert als Creative Commons BY-NC: Frei Verwendung und Veränderung für nicht-kommerzielle Zwecke und unter Nennung der "Coronavirus Structural Task Force" als Urheber.

3D-Druck Illustration von Thomas Splettstoesser (links) im Vergleich mit dem Modell von Dale Tonrud aus Oregon (mitte) und dem Thorn Lab aus Würzburg (rechts).
3D-Druck Illustration von Thomas Splettstösser (links) im Vergleich mit dem Modell von Dale Tonrud aus Oregon (mitte) und dem Thorn Lab aus Würzburg (rechts).

Wie bei jedem 3D-Modell, gibt es weit mehr als einen Weg, diese Aufgabe anzugehen und zu vollenden. Wir freuen uns, darauf, Eure Modelle zu sehen und mit Euch über Herangehensweisen und Techniken zu diskutieren - hier in den Kommentaren, auf Thingiverse oder Twitter!

Die Autoren:

Wir möchten hervorheben, dass dieser Artikel eine Zusammenarbeit mehrerer Leute ist:

Dale Tonrud und Thomas Splettstösser haben zusammen die STL Dateien für das 3D Modell erstellt und verfeinert. dale hatte die Idee, ein Modell zu drucken und diese wurde dann von Andrea Thorn aufgegriffen. Thomas und Dale sorgten dann dafür, das Modell möglichst realistisch und gleichzeitig gut für Handhabung und Druck in Einzelteilen zu gestalten. Dale druckte das erste Design des Modells aus.
Matt Reeves war für die Optimierung und den Druck des Würzburger Modells zuständig. Er fand heraus, wie das Modell am besten nachbearbeitet wird und trug zusammen mit dem Rest des Teams zur Verbessung des Modells bei.
Kristopher Nolte arbeitete zusammen mit Ferdinand Kirsten das gedruckte Modell auf und reinigte es. Kristopher war zudem für die filigrane Arbeit des Bemalens und Zusammensetzens des fertigen Virions verantwortlich.

Dieser Artikel ist übersetzt von Ferdinand Kirsten, Pairoh Seeliger und Kristopher Nolte, nach dem originalen Artikel in Englisch von Kristopher Nolte, Dale Tonrud und Matt Reeves.

Logo Coronavirus Structural Taskforce
Top