The new mutation of SARS-CoV-2

Dezember 23, 2020

Leider steht für diesen Artikel keine deutsche Übersetzung zur Verfügung.

Introduction

It is known as VUI‑202012/01 or B.1.1.7 – the new mutation of the coronavirus Sars-CoV-2. It may be responsible for a sharply increased number of infections in the southeast of England (​1​), however, the scientific results leading to very strict lockdown measurements in the south of the UK, and travel restrictions across Europe are few and far between. Here, we have compiled what is known up until now.

On mutations

Mutations are normal in the evolution of life – and of viruses. If two similar viruses have infected the same cell, their genomes can become mixed-up, one of the reasons why animal influenza strains are considered so dangerous. This is also called recombination. Mutations can be caused by chemicals, radiation (including UV light) and errors during genome copying. A typical SARS-CoV-2 virus accumulates two amino acid changes per month in its genome — a rate of change about half that of influenza (​2​). This is because SARS-CoV-2 can repair RNA to some extent. But even so, this natural process led to thousands of mutations since the beginning of the pandemic. If they affected the virus life cycle negatively, that strain may have likely died out - if they did not make a difference or enhanced its chances of survival, it may have persisted.


Nextstrain interface as of 22/12/2020: Mutations happen a lot. Screenshot by Andrea Thorn / Coronavirus structural Task Force.
SARS-CoV-2 mutations as of 22/12/2020: Mutations happen a lot. A very good interface to the genetic variants of SARS-CoV-2 is https://nextstrain.org/ncov/global. Screenshot by Andrea Thorn / Coronavirus structural Task Force.

Many mutations that are observed occur in the spike protein, which both serves to recognize potential host cells but is also what is being recognized by antibodies (i.e., the immune system).

Changes here can be crucial for the survival of the virus (“evolutionary pressure”) as they could significantly alter its affinity to the human receptor ACE2, which the virus uses as gateway to our cells.

Animation of spike protein binding the host cell and the molecular mechanism merging host cell and virus. CC-BY-NC Coronavirus Structural Task Force / Iwasa Lab

What vaccines do

Most, if not all, potential COVID-19 vaccines expose our body to some part of the spike protein, which can be made by the body itself (mRNA vaccines) or carried by a harmless virus instead of SARS-CoV-2 (vector). Our body then produces antibodies which specifically recognize the spike and persist for several months. If we are exposed afterwards to the real virus, the body can recognize it immediately – and the risk of infection is much lower as the immune system swings into action immediately. Earlier this year, the spike mutation D614G (amino acid residue number 614 changing from aspartic acid (D) to glycine (G)) caused quite a stir in the media, and became the predominant form of SARS-CoV-2 (​2​, 3). However, if and in how far this was caused by natural selection is still debated (​3​). Another example which triggered an increased media coverage was the mutation Spike Y453F, which originated from infected minks in Denmark (​4​) and led to a culling of millions of animals. In any case, if we would be vaccinated with a spike protein form that would be different from the one in a virus we encounter later, there is a small chance that the vaccine may be rendered ineffective. This chance is, however, small for SARS-CoV-2, in any case much smaller than for HIV, which famously evaded any attempt to develop a vaccine.

Model of spike (green) with bound antibody (yellow). Both models can be 3D printed (Instructions).  Photo CC-BY-NC 2020 Andrea Thorn / Coronavirus Structural Taskforce.
Model of spike (green) with bound antibody (yellow). Both models can be 3D printed (Instructions). Photo CC-BY-NC 2020 Andrea Thorn / Coronavirus Structural Taskforce.

What do we know?

There was a steep rise in infections in the UK recently, as in most other European countries.

A new mutation of the virus has emerged and seems to replace the old version of SARS-CoV-2 (​5​). Thousands of patients have been found to carry this variant.

This new variant has more mutations at once than expected. These mutations have not observed in this combination before.

The variant has been reported in the UK, the Netherlands, Denmark, Australia and Belgium so far.

What is striking to me as scientist about these findings is one thing in particular: How could the British government find that thousands of people were having the new SARS-CoV-2 variant, instead of the old, if the illness does not look any different? Sequencing samples from each and every patient would be technically very challenging, if not impossible. How could they know? The answer is:

Serendipity

The main PCR test employed in the United Kingdom is Thermo Fisher's TaqPathCOVID-19. This test identifies RNA on three different genome locations: In ORF1ab, nucleotide and spike. Now, it stopped working for the spike portion of the test, while the other two RNAs were still found to be present, which likely prompted scientists to sequence some of the samples in question. And indeed, the new mutant has a deletion of histidine-69 and valine-70, called 69-70del. This permitted easy differentiation of patients with the old SARS-CoV-2 (3 hits) and the new (2 hits) and is the reason why we know so much about the epidemiology of this variant!​*​ It has also to be said that this test is not used as often in other countries, such as Germany, and this could well be the reason why we do not know if and how widespread it is here. In addition, other countries sequence much smaller proportions of virus isolates than the UK, so ongoing circulation of this variant outside of the UK cannot be excluded.

The details of the mutation

The new variant of SARS-CoV-2 VUI-202012/01 has 14 amino acid changes and three deletions affecting the genes for ORF1ab, spike and ORF8. One of these mutations (N501Y) occurs in the receptor binding domain and could lead to an increased binding affinity to the human ACE2. The 69-70 deletion has likely an immunological role and is the reason this mutant was detected so widely, as this RNA location is used for PCR tests. Another interesting mutation is the P681H, which is next to a furin cleavage site that has a biological significance in membrane fusion. These mutations could be responsible for the increased transmissibility. The effects of the other mutations aren’t fully investigated yet. Here is a list of the mutations which have been observed in the VUI‑202012/01 or B.1.1.7 variant:

T1001I in gene ORF1ab
A1708D in gene ORF1ab
I2230T in gene ORF1ab
SGF 3675-3677 deletion in gene ORF1ab
A1708D in gene ORF1ab
HV 69-70 deletion in spikeThe 69-70 deletion on the spike protein is a re-occurring mutation that has shown to often co-occur with other amino acid changes in the RBD (​6​, 7).
(1) Evasion to the human immune response and in association with other receptor binding domain changes (​1​)
(2) Immunological role (​8​)
(3) Leads to diagnostic failures which permit detection (see above, "Serendipity")
(4) Associated with immune escape in immunocompromised patients (​9(​8​))
Furthermore, the 69-70 deletion arose in multiple unrelated lineages and is associated with the evasion of the immune response (​9​). It is being hypothesized that this mutation undergoes a strong positive selection when exposed to convalescent plasma therapy in an immunocompromised human host (​7​).
Y144 deletion in spikeDeletion in the spike N-terminal domain (​9​)
N501Y in spikeOne of six key contact residues in the spike receptor binding domains, this mutation leads to an increasing binding affinity to human and murine ACE2 (​1​).
A570D in spikeMutation located at the spike receptor binding domain (​10​)
P681H in spikeThe P681H mutation is located directly next to the furin cleavage site. It is one of the four residues which are insertions when compared to closely related coronaviruses, creating a furin cleavage site in the spike protein between the spike S1 and S2 domains. This prompts the entry of the virus into respiratory epithelial cells as well as the transmission in animal models (​1​)
The S1/S2 furin cleavage site of SARS-CoV-2 is not found in closely related coronaviruses and has been shown to promote entry into respiratory epithelial cells and transmission in animal models (​9​)
T716I in spikeMutation in in the S2 domain
S982A in spikeMutation in in the S2 domain (​10​)
D1118H in spikeMutation in in the S2 domain (​8​)
Q27 stop in ORF8The Q27stop mutation in the ORF8 leads to the truncation of the ORF8, and as it only consists of 121 amino acids, the consequence might be a loss of function. These and the other mutations could be responsible for the increased transmissibility of the B.1.1.7 variant. In any case, this mutation truncates the ORF8 protein at residue 27 or renders it inactive which allows further downstream mutations to accrue. (​1​)
R52I in ORF8
Y73C in ORF8
D3L in nucleocapsid
S235F in nucleocapsid
picture of Spike mutation sites from the COVID-19 Genomics UK Consortium
Spike mutation sites. Picture by the COVID-19 Genomics UK Consortium (​9​).

Why were there so many mutations at once?

This could be a result of prolonged or chronical SARS-CoV-2 infections as study of these infections reveal unusually large numbers of nucleotide changes and deletion mutations and often high ratios of non-synonymous changes. In addition to this, convalescent plasma treatment can cause intra-patient virus genetic diversity (​11​).

What does the new mutation mean in terms of impact and epidemiology?

There was an increase in cases with the new strain in total and in

proportion to the old (​1​). What does that mean for us?

This is what the internet says:

The COVID-19 genomics UK consortium (COG) reports about a “priority set of SARS-CoV-2 Spike mutations that are of particular interest based on potential epidemiological significance in the UK and/or biological evidence based on the literature or unpublished work.” (​9​)

The New and Emerging Respiratory Virus Threats Advisory Group of the British government (NERVTAG) discussed the new variant on Friday and concluded that its growth rate is higher by 67-75% and that this is likely due to a selective advantage. “In summary, NERVTAG has moderate confidence that VUI-202012/01 demonstrates a substantial increase in transmissibility compared to other variants.” (​12​) This is very likely the source of Boris Johnson’s claim to this strain being “70% more infectious”.

The English government writes that PHE (Public Health England) „is working with partners to investigate and plans to share its findings over the next 2 weeks. There is currently no evidence to suggest that the variant has any impact on disease severity, antibody response or vaccine efficacy. High numbers of cases of the variant virus have been observed in some areas where there is also a high incidence of COVID-19. It is not yet known whether the variant is responsible for these increased numbers of cases.” (​13​)

Conclusion

From this, we conclude that the British government, and we, do not know yet. It has not been conclusively shown that the new variant is more infectious (likely), has an easier time to evade the host immune system or if the vaccine will be less effective against it (very unlikely). The epidemologic model which predicts a higher tranmissability has still to be published, the science is still in the making. Tests of vaccines against the new variant are ongoing and will take a few weeks. There is yet little evidence that this new variant poses a significantly bigger threat than others - or to the contrary.

Acknowledgements

While I am listed as author of this article, it could not have been written without the help and research by Pairoh Seeliger, Lea von Soosten, Luise Kandler, Erik Nebelung and Oliver Kippes who all helped in this.
I would also thank Nicolai Wilk from Thermo Fisher Scientific who quickly responded to my questions about their test.


The title picture shows mutation cards from the game Pandemic Expansion: On the Brink by Z-Man Games.


  1. ​*​
    The 69-70del mutation is predominantly observed in B.1.1 (including B.1.1.7), B.1.258, and the cluster 5 variant lineages of SARS-CoV-2.

References

  1. 1.
    A. Rambaut, Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations. virological.org (2020), (available at https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563).
  2. 2.
    E. Callaway, The coronavirus is mutating — does it matter? Nature, 174–177 (2020).
  3. 3.
    L. Zhang, C. B. Jackson, H. Mou, A. Ojha, H. Peng, B. D. Quinlan, E. S. Rangarajan, A. Pan, A. Vanderheiden, M. S. Suthar, W. Li, T. Izard, C. Rader, M. Farzan, H. Choe, SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nat Commun (2020), doi:10.1038/s41467-020-19808-4.
  4. 4.
    ECDC, Detection of new SARS-CoV-2 variants related to mink. www.ecdc.europa.eu (2020), (available at https://www.ecdc.europa.eu/sites/default/files/documents/RRA-SARS-CoV-2-in-mink-12-nov-2020.pdf).
  5. 5.
    ONS UK , Percentage of COVID-19 cases that are positive for ORF1ab and N genes. www.ons.gov.uk (2020), (available at https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/adhocs/12690percentageofcovid19casesthatarepositivefororf1abandngenes).
  6. 6.
    R. M. Dawood, M. A. El-Meguid, G. M. Salum, K. El-Wakeel, M. Shemis, M. K. El Awady, Bioinformatics prediction of B and T cell epitopes within the spike and nucleocapsid proteins of SARS-CoV2. Journal of Infection and Public Health (2020), doi:10.1016/j.jiph.2020.12.006.
  7. 7.
    S. A. Kemp, D. A. Collier, R. Datir, S. Gayed, A. Jahun, M. Hosmillo, I. A. Ferreira, C. Rees-Spear, P. Mlcochova, I. U. Lumb, D. Roberts, A. Chandra, N. Temperton, K. Sharrocks, E. Blane, J. A. Briggs, K. G. Smith, J. R. Bradley, C. Smith, R. Goldstein, I. G. Goodfellow, A. Smielewska, J. P. Skittrall, T. Gouliouris, E. Gkrania-Klotsas, C. J. Illingworth, L. E. McCoy, R. K. Gupta, Neutralising antibodies drive Spike mediated SARS-CoV-2 evasion (2020), , doi:10.1101/2020.12.05.20241927.
  8. 8.
    K. Kupferschmidt, Mutant coronavirus in the United Kingdom sets off alarms, but its importance remains unclear. Science (2020), doi:10.1126/science.abg2626.
  9. 9.
    COG, COG-UK update on SARS-CoV-2 Spike mutations of special interest Report 1. https://www.cogconsortium.uk (2020), (available at https://www.cogconsortium.uk/wp-content/uploads/2020/12/Report-1_COG-UK_19-December-2020_SARS-CoV-2-Mutations.pdf).
  10. 10.
    S. Kemp, W. Harvey, R. Datir, D. Collier, I. Ferreira, A. Carabelii, D. L. Robertson, R. K. Gupta, Recurrent emergence and transmission of a SARS-CoV-2 Spike deletion ΔH69/V70 (2020), , doi:10.1101/2020.12.14.422555.
  11. 11.
    ECDC, Threat Assessment Brief: Rapid increase of a SARS-CoV-2 variant with multiple spike protein mutations observed in the United Kingdom. www.ecdc.europa.eu (2020), (available at https://www.ecdc.europa.eu/en/publications-data/threat-assessment-brief-rapid-increase-sars-cov-2-variant-united-kingdom).
  12. 12.
    NERVTAG, NERVTAG meeting on SARS-CoV-2 variant under investigation VUI-202012/01. https://khub.net (2020), (available at https://khub.net/documents/135939561/338928724/SARS-CoV-2+variant+under+investigation%2C+meeting+minutes.pdf/962e866b-161f-2fd5-1030-32b6ab467896?t=1608470511452).
  13. 13.
    PHE, PHE investigating a novel variant of COVID-19 . www.gov.uk (2020), (available at https://www.gov.uk/government/news/phe-investigating-a-novel-variant-of-covid-19).

Corinna, der Corona-Kaktus

@
Corinna ist das Maskottchen der Task Force und hilft bei allen pflanzenbezogenen Aufgabenstellungen. Frühere Erfahrungen konnte sie schon im Baumarkt sammeln, und auch wenn sie manchmal etwas kratzbürstig sein kann, liebt sie es doch zu kuscheln und in der Sonne zu liegen
Mehr über diesen Autor

Helen Ginn

Senior Research Scientist @ Diamond Light Source, Oxfordshire, UK
Dr. Helen Ginn ist leitende Wissenschaftlerin am Diamond Light Source Institut in Großbritannien und Methodenentwicklerin für die Strukturbiologie. Derzeit arbeitet sie an der Darstellung von Proteineinheiten (Representation of Protein Entities, RoPE) für Strukturbiologen. Sie hat die Software Vagabond zur torsionswinkelgesteuerten Modellverfeinerung und cluster4x zur Gruppierung von Datensätzen entwickelt. Zu ihren Forschungsinteressen gehört auch die Kartierung […]
Mehr über diesen Autor

Nick Pearce

Assistant Professor @ SciLifeLab DDLS Fellow
Nicholas Pearce machte 2012 seinen Bachelor in Physik an der Universität Oxford und promovierte 2016 in Systems Approaches to Biomedical Sciences. Im Jahr 2017 zog er nach Utrecht in den Niederlanden, um mit Piet Gros zu arbeiten. Dort erhielt er ein EMBO-Langzeitstipendium und arbeitete an der Analyse von Unordnung in makromolekularen Strukturen. Anschließend erhielt er […]
Mehr über diesen Autor

Mathias Schmidt

Student der Molecular Life Sciences (M.Sc.) @ Universität Hamburg
Mathias macht momentan seinen Master in Molecular Life Sciences an der Universität Hamburg und ist seit März 2022 Hilfswissenschaftler in der Corona Structural Taskforce. Dort beschäftigt er sich mit der Frage nach dem Ursprung von SARS-CoV-2. Sein Forschungsschwerpunkt im Studium liegt auf der Entwicklung von synthetischen, molekularen Mechanismen zur Regulierung von Genen in pflanzlichen wie […]
Mehr über diesen Autor

David Briggs

Principal Laboratory Research Scientist @ Francis Crick Institute in London, UK
David Briggs ist Principal Laboratory Research Scientist im Labor für Signal- und Strukturbiologie am Francis Crick Institute in London, UK. Als ausgebildeter Kristallograph konzentriert sich seine Arbeit auf die biophysikalische und strukturelle Charakterisierung menschlicher extrazellulärer Proteine, die an der Synapse beteiligt sind und wichtige Auswirkungen auf psychiatrische und neurodegenerative Störungen haben. Er ist auch an […]
Mehr über diesen Autor

Lisa Schmidt

Webentwicklerin und Illustratorin @ Mullana
Lisa Schmidt ist freiberufliche Illustratorin und studierte Multimedia und Kommunikation (BA) in Ansbach, Deutschland. Ihre Arbeit konzentriert sich auf die Visualisierung von Wissenschaft und Technik. Sie ist als Mediengestalterin bei der Coronavirus Structural Task Force tätig, wo sie Webdesign, 3D-Rendering für wissenschaftliche Illustrationen und Öffentlichkeitsarbeit betreibt.
Mehr über diesen Autor

Philip Wehling

Student der Nanowissenschaften (M.Sc.) @ Institut für Nanostruktur und Festkörperphysik, Universität Hamburg
Philip begeistert sich schon lange für biologische Prozesse und verfügt über ein analytisches Weltverständnis. Nachdem er lange Zeit als Krankenpfleger in verschiedenen Bereichen gearbeitet hat, studierte er zunächst Mathematik und schließlich Nanowissenschaften. Im Rahmen einer Ringvorlesung zur Vorbereitung einer Bachelorarbeit kam er mit der Proteinkristallographie in Berührung und beginnt nun, sich als Mitglied des Thorn […]
Mehr über diesen Autor

Binisha Karki

Wissenschaftliche Mitarbeiterin @ BioNTech SE
Binisha ist als wissenschaftliche Mitarbeiterin bei BioNTech angestellt und arbeitet an der Entwicklung von Impfstoffen gegen COVID-19 sowie Krebsimmuntherapien. Sie beendete ihr Studium der Molekularbiologie an der Southeastern Louisiana University im Mai 2019. Anschließend arbeitete sie als Forschungstechnikerin im Chodera-Lab, wo sie biophysikalische Messungen an Modellen von Protein-Liganden-Systeme für computerchemische Benchmarks durchführte.
Mehr über diesen Autor

Hauke Hillen

Juniorprofessor an der Universitätsmedizin Göttingen & Gruppenleiter am MPI für Biophysikalische Chemie @ Universitätsmedizin Göttingen
Hauke ist Biochemiker und Strukturbiologe. Mit seinem Forschungsteam untersucht er mittels Röntgenkristallografie und Kryo-Elektronenmikroskopie die Struktur und Funktion von molekularen Maschinen, die für die Genexpression in eukaryotischen Zellen verantwortlich sind. Er interessiert sich dabei besonders dafür wie genetisches Material außerhalb des Zellkerns exprimiert wird, zum Beispiel in menschlichen Mitochondrien oder durch Viren im Zytoplasma.
Mehr über diesen Autor

AG Richardson

AG Richardson @ Duke University, Durham, North Carolina, USA
Das Langzeitziel der AG Richardson ist ein tieferes Verständnis der dreidimensionalen Strukturen von Proteinen und RNA zu erhalten, einschließlich ihrer Beschreibung, Einflussfaktoren, Faltung, Evolution und Regulation. Hierbei verwenden die Richardsons strukturelle Bioinformatik, makromolekulare Kristallographie, Molekülgrafik, Strukturanalyse und Methodenentwicklung, insbesondere bei der Verbesserung der Genauigkeit von molekularen Strukturen. Im Projekt arbeiten und bewerten sie die Geometrie […]
Mehr über diesen Autor

Holger Theymann

Agile-Leadership-Coach @ mehr-Freu.de GmbH
Holger hält Webseiten am Laufen. Er zaubert Daten aus wissenschaftlichen Datenbanken in hübsche Tabellen. Er hat außerdem ein Auge darauf, dass die Seiten schnell, sicher und zuverlässig ist. Seine Erfahrung als Software-Entwickler, Software-Architekt, Agiler Projektmanager und Coach halfen der Task Force, dass der ganze Prozess rund lief. Außerdem zeigt er den Mitgliedern der Task Force, […]
Mehr über diesen Autor

Ezika Joshua Onyeka

Public Health M.Sc. Student @ Hamburg University
Joshua arbeitet als studentische Hilfskraft im Thorn Lab. Er hat einen Bachelor-Abschluss in Public Health und ist derzeit an der Hochschule für Angewandte Wissenschaften Hamburg (HAW) für seinen MPH eingeschrieben. Er hat bei der Umsetzung einiger Impfprogramme geholfen, um die Impfrate zu verbessern und bei der Ausbildung von medizinischem Personal in Hinblick auf die Impfstrategie. […]
Mehr über diesen Autor

Florens Fischer

Student der Biologe (M.Sc.) @ Rudolf-Virchow-Zentrum, Universität Würzburg
Florens studiert Biologie (M.Sc.) und unterstützte als Hilfswissenschaftler die Task Force. Sein Fokus lag dabei in der Bioinformatik und er unterstützt die Arbeiten wie Automatisierung von Programmcode und Strukturierung von Big Data mit Hilfe von Machine Learning. Außerdem unterstützte er das Team in anderen Bereichen, wie zum Beispiel in der wissenschaftlichen Recherche.
Mehr über diesen Autor

Katharina Hoffmann

Studentin der Molekularbiologie (M.Sc.) @ Institut für Nanostruktur und Festkörperphysik, Universität Hamburg
Katharina hat im AK Thorn als Hiwi gearbeitet. Normalerweise studiert sie im Master Molekularbiologie an der Uni Hamburg. In ihrer durch Corona auf Eis gelegten Masterarbeit beschäftigt sie sich mit der Unterbrechung bakterieller Kommunikation. Seit dem Lockdown treibt sie sich in Datenbanken rum und analysiert Sequenzen. Sie hätte nie gedacht, so nah an die Strukturbiochemie […]
Mehr über diesen Autor

Nicole Dörfel

Mediengestalterin @
Nicole Dörfel sorgt dafür, dass wir und unsere Arbeit gut aussehen! Sie ist die Illustratorin, Mediengestalterin und künstlerische Seele der Task Force. Ihren Pinsel schwingt sie sowohl im Printbereich als auch digital – stets mit der Spezialisierung auf Mediendesign. Für die Task Force ist Nicky vor allem zuständig für Grafikdesign, sämtliche Werbematerialien (für die Öffentlichkeitsarbeit) […]
Mehr über diesen Autor

Pairoh Seeliger

Verwaltungsassistentin @ Institut für Nanostruktur und Festkörperphysik, Universität Hamburg
Pairoh Seeliger entlastet als die Assistentin der Task Force die Wissenschaftler. Sie kümmert sich um Medienanfragen, Sprachprobleme und logistische Aufgaben aller Art. Außerdem bewertet sie die Verständlichkeit und Sprache unserer deutschen Öffentlichkeitsarbeit. Sie bezeichnet sich selbst als "Mädchen für Alles mit Germanistikstudium und kaufmännischer Ausbildung. Spezialität: Pfefferminztee".
Mehr über diesen Autor

Oliver Kippes

Student der Biochemie (B.Sc.) @ Rudolf-Virchow-Zentrum, Universität Würzburg
Oliver studiert Biochemie und hat vor seinem Studium eine Ausbildung als Fachinformatiker absolviert. Mithilfe des kombinierten Wissens seines Studiums und seiner Ausbildung hilft er bei der Verwaltung der Strukturdatenbank, programmiert Anwendungen für diese und unterstützt das Team bei Literaturrecherchen. Die Strukturbiologie war für Oliver trotz seines Studiums ein noch neues Themenfeld, das er mit großer […]
Mehr über diesen Autor

Luise Kandler

Studentin der Biochemie (B.Sc.) @ Rudolf-Virchow Zentrum, Julius-Maximilians-Universität Würzburg
Luise studiert Biochemie und ist der Task Force während des ersten Corona-Lockdowns beigetreten. Ihre Bachelorarbeit mit Fokus auf Computer anwendung hat sie im AK Thorn geschrieben. In der Task Force nutzt sie ihr biochemisches Wissen für Literaturrecherchen und versucht, die besten Visualisierungen von Molekülen des Coronavirus zu finden. Nichtsdestotrotz lernt Luise nebenbei auch Python und […]
Mehr über diesen Autor

Ferdinand Kirsten

Student der Biochemie (B.Sc.) @ Rudolf-Virchow-Zentrum, Universität Würzburg
Ferdinand hat am AK Thorn seine Bachelorarbeit über Lösungsmittelaustausch und Interaktion in makromolekularen Kristallen angefertigt. Als Novize in der Welt der Kristallographie und der Strukturaufklärung hilft er, wo er kann, wobei sein Hauptaugenmerk auf Literatur- und Genom-Recherchen sowie der Strukturverfeinerung liegt. Auch wenn er sich eigentlich mehr als „Ich will aber was anfassen und im […]
Mehr über diesen Autor

Kristopher Nolte

Student der Biochemie (B.Sc.) @ Rudolf-Virchow Zentrum, Julius-Maximilians-Universität Würzburg
Kristopher trat dem AK Thorn im Rahmen seiner Bachelorarbeit bei. In dieser Arbeit hat er AUSPEX mit Hilfe maschinellen Lernens verfeinert. Da aber die Coronakrise unser aller Leben zum Stillstand gebracht hat, trägt er nun zur Task Force bei, indem er seine Kenntnisse der Bioinformatik und Programmierung nutzt, um alle Coronavirus-relevanten Daten aus der PDB […]
Mehr über diesen Autor

Toyin Akinselure

Studentin der Nanowissenschaften (M.Sc.) @ Institut für Nanostruktur und Festkörperphysik, Universität Hamburg
Toyin ist Mikrobiologin und derzeit Masterstudentin der Nanowissenschaften mit den Schwerpunkten Nanobiologie und Nanochemie. Sie interessiert sich für wissenschaftliche Forschung, insbesondere für Proteinchemie und Wirkstoffentwicklung. Im letzten Herbst und Winter hat sie ein Praktikum bei zwei Forschungsprojekten gemacht, eines in der Wirkstoffforschung und das andere in der Proteinstrukturaufklärung. Sie fand beide spannend und hofft, ihr […]
Mehr über diesen Autor

Erik Nebelung

Student der Nanowissenschaften (M.Sc.) @ Institut für Nanostruktur und Festkörperphysik, Universität Hamburg
Erik studiert Nanowissenschaften mit Fokus auf biochemischen Anwendungen und Methoden. Zwischen August 2020 und Januar 2021 führte er im iNano Institute in Aarhus sein Studium fort, inzwischen hat er – zurück in Hamburg – seine Masterarbeit begonnen. In seiner Bachelorarbeit kam er bereits in den Genuss, Proteine zu kristallisieren, was seine Faszination für Biomoleküle nur […]
Mehr über diesen Autor

Lea von Soosten

Studentin der Physik (M.Sc.) @ Institut für Nanostruktur und Festkörperphysik, Universität Hamburg
Lea studiert Physik im Master und interessiert sich für alles, was mit Biologie zu tun hat. Obwohl sie aus einem anderen Bereich kommt, ist sie dem Team beigetreten, um ihr Wissen über Biochemie zu erweitern und der Task Force mit Schwerpunkt auf Literaturrecherche zu helfen. Außerdem liebt sie es, zu zeichnen!
Mehr über diesen Autor

Sabrina Stäb

Studentin der Biotechnologie (M.Sc.) @ Institut für Nanostruktur und Festkörperphysik, Universität Hamburg
Sabrina studiert Biochemie und arbeitet als Hilfswissenschaftlerin im AK Thorn und in der CSTF. Durch ihre Bachelorarbeit zur „Kristallisation und Strukturlösung von qualitativ hochwertigen Strukturen für MAD-Experimente“ konnte sie reichlich Erfahrung im Bereich Kristallographie sammeln und bringt diese nun im Projekt ein. Wenn sie nicht gerade wegen COVID-19 daheim bleiben muss, verbringt sie ihre Freizeit […]
Mehr über diesen Autor

Alexander Matthew Payne

Doktorand der Chemischen Biologie @ Chodera Lab, Memorial Sloan Kettering Center for Cancer Research, New York, USA
Alex ist ein Doktorand, der verstehen möchte, wie sich Proteine bewegen. Er arbeitet seit kurzem in den Laboren von John Chodera und Richard Hite an einem Projekt zwischen Molekulardynamik und Cryo-EM. Sein Ziel ist es, Konformationsensembles aus Cryo-EM-Daten zu generieren und diese mithilfe von Massive Scale Molecular Dynamics über Folding@home zu simulieren. Er ist auch […]
Mehr über diesen Autor

Maximilian Edich

Doktorand der Bioinformatik @ Institut für Nanostruktur und Festkörperphysik, Universität Hamburg
Max hat seinen Master in Bioinformatik und Genomforschung in Bielefeld absolviert und ist 2021 als Doktorand der CSTF beigetreten. Sein Fokus lag bis dato auf dem molecular modeling und nun beschäftigt er sich mit der sogenannenten R-factor gap. Als Teilnehmer des iGEM Wettbewerbs konnte er bereits 2017 erleben, was es heißt Teil eines jungen und […]
Mehr über diesen Autor

Agnel Praveen Joseph

Computerwissenschaftler @ Science and Technology Facilities Council, UK
Dr. Agnel Praveen ist Methodenentwickler im CCP-EM Team des Science and Technology Facilities Councils des Vereinigten Königreichs (STFC UK). Sein Hauptaugenmerk liegt auf verschiedenen Herangehensweisen, um atomare Cryo-EM-Modelle und Rekonstruktionsdichten zu interpretieren und zu bewerten. Ebenso gehören computerbasierte Methoden zur Interpretation von Cryo-ET-Daten zu seinem Abeitsfeld. Zusammen mit fünf anderen Gruppen in Großbritannien arbeitet er […]
Mehr über diesen Autor

Dale Tronrud

Freier Wissenschaftler @
Dr. Dale Tronrud löst Proteinkristallstrukturen und entwickelt Methoden und Software zur Optimierung makromolekularer Modelle gegen Röntgendaten und chemisches Vorwissen. Seine Interessen umfassen Enzym-Inhibitor-Komplexe und Photosyntheseproteine, mit einem Schwerpunkt auf dem Fenna-Matthews-Olson Protein. Darüberhinaus ist er auch an der Validierung und Korrektur vieler PDB Modelle beteiligt gewesen. Bei all diesen Projekten ist es essenziell, die richtige […]
Mehr über diesen Autor

Sam Horrell

Beamline-Wissenschaftler @ Diamond Light Source, Oxfordshire, Großbritannien
Dr. Sam Horrell ist Struktubiologe in der Methodenentwicklung am Teilchenbeschleuniger Diamond Light Source, insbesondere Methoden, um die Funktion von Enzymen mit Strukturfilmen besser aufklären zu können. Im Projekt arbeitet sich Sam durch die deponierten SARS-CoV und SARS-CoV-2-Strukturen, um das bestmögliche Modell für zukünftige Arzneimittelentwicklung zu finden. Er kommuniziert gerne über seine und andere Wissenschaft und […]
Mehr über diesen Autor

Cameron Fyfe

Postdoc @ Micalis Institute, INRAE, Paris, France
Cameron ist ein Strukturbiologe, der sich bisher ausgiebig mit Proteinen aus Mikroorganismen beschäftigt hat. Er hat langjährige Erfahrung in der pharmazeutischen Industrie und der strukturbiologischen Forschung. In der Task Force möchte er seine Fähigkeiten zur Verbesserung bestehender Modelle für die Medikamentenentwicklung einsetzen. Derzeit forscht er am INRAE an radikalen SAM-Enzymen. Wenn er nicht im Labor […]
Mehr über diesen Autor

Tristan Croll

Postdoc @ Cambridge Institute for Medical Research, University of Cambridge
Dr. Tristan Croll ist Spezialist für die Modellierung atomarer Strukturen in schlecht aufgelösten kristallographischen und Kryo-EM-Dichtekarten und der Entwickler des Modellbauprogramms ISOLDE. Sein Hauptaugenmerk liegt auf der Korrektur der verschiedenen Fehler in der Molekülgeometrie oder bei inkorrekter Dichteinterpretation, die in schlecht aufgelösten Teilen der Dichte vorkommen, mit dem Ziel, den Modellbau bei 3 Angström auf […]
Mehr über diesen Autor

Gianluca Santoni

Forscher für Daten in der seriellen Kristallographie @ European Synchrotron Radiation Facility, Grenoble, Frankreich
Dr. Gianluca Santoni ist Experte für proteinkristallographische Datensammlung und -analyse. Nach seiner Doktorarbeit in strukturbasiertem Wirkstoffdesign hat er als Postdoc am Strahlrohr ID23-1 der European Synchrotron Radiation Facility (ESRF) gearbeitet und die SSX-Datenanalysesoftware ccCluster entwickelt. Mittlerweile interessiert er sich für die Optimierung von Messstrategien für die Datensammlung von mehreren Kristallen und ist außerdem der wissenschaftliche […]
Mehr über diesen Autor

Yunyun Gao

Postdoc im AUSPEX-Projekt @ Institut für Nanostruktur & Festkörperphysik, Universität Hamburg
Yunyun Gao ist Methodenentwickler für Analysestrategien für Biomolekül-Daten. Bevor er zur Thorn-Gruppe kam, arbeitete er an SAXS/WAXS von Polymeren und Proteinen. Er will Datenanalysen objektiver und zuverlässiger  machen. Yunyun erweitert zur Zeit die Funktionalität von AUSPEX. In der Coronavirus Structural Taskforce managt er die Datenbank und alles, was mit AUSPEX zu tun hat.
Mehr über diesen Autor

Johannes Kaub

Wissenschaftlicher Koordinator @ Institut für Nanostruktur & Festkörperphysik, Universität Hamburg
Johannes Kaub hat Chemie, Schwerpunkt Physikalische Festkörperchemie, an der RWTH Aachen studiert und war anschließend als wissenschaftlicher Mitarbeiter am Max-Planck-Institut für Struktur und Dynamik der Materie beschäftigt. Die Coronavirus Structural Task Force unterstützt er als wissenschaftlicher Koordinator mithilfe seiner organisatorischen Fähigkeiten und seiner Begabung fürs Lösen von Problemen. Neben der Wissenschaft gilt seine größte Leidenschaft […]
Mehr über diesen Autor

Andrea Thorn

Gruppenleiterin @ Institut für Nanostruktur und Festkörperphysik, Universität Hamburg
Dr. Andrea Thorn ist Spezialistin für die Strukturlösung mit kristallographischen Methoden und Kryo-Elektronenmikroskopie. Sie hat in der Vergangenheit zu Programmen wie SHELX, ANODE und (etwas) PHASER beigetragen. Ihre Arbeitsgruppe entwickelt die Diffraktionsdaten-Analysesoftware AUSPEX, ein neuronales Netzwerk zur Sekundärstrukturannotation in Kryo-EM Dichtekarten (Haruspex) und ermöglicht anderen Wissenschaftlern die Lösung schwieriger Strukturen. Andrea hat eine Leidenschaft für […]
Mehr über diesen Autor

2 comments on “The new mutation of SARS-CoV-2”

  1. Hello, could you please do us readers a favor and add date stamps to the different article headlines to identify when they were created eg. posted.

    Thanks

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert

cross