The Disastrous Life of Nsp15 Endoribonuclease NendoU

August 21, 2020

Für diesen Beitrag steht leider keine deutsche Übersetzung zur Verfügung.

Introduction

Before I started writing this article, the first thing I did was to google the name of my protein “NendoU” and was greeted by Figure 1. Needless to say, this is not what I was expecting. So, if you’re an anime fan looking for Riki Nendou, a dutiful yet dull-witted boy who likes helping people, particularly prioritising the weak, from The Disastrous Life of Saiki K: I’m afraid you have come to the wrong place. However, now that you’re here, maybe you’d like to learn about an interesting protein involved in SARS-CoV-2 viral replication? It can bind to and process six RNA molecules at a time! Six!

The Disastrous Life of Nsp15 Endoribonuclease NendoU 1
Figure 1: Not the NendoU you were looking for

After that interlude, I should get this blog post back on track! So… viruses and proteins. SARS-CoV-2 is an enveloped coronavirus with a non-segmented positive-sense RNA genome, in English this means the RNA genome in SARS-COV-2 can be used “as is” to make viral proteins without prior modification. SARS-CoV-2 has one of the largest RNA genomes among RNA viruses, made up of a replicase gene encoding non-structural proteins (nsps), as well as various structural and accessory genes. During viral replication, depending on the starting point (a.k.a. a ribosomal frame shift), the replicase gene can produce one of two poly-protein chains, which are then cleaved to produce 15-16 individual viral nsps (non-structural Proteins). These nsps then form a large membrane-bound replicase complex with multiple enzymatic activities, like a tiny viral Voltron.

What’s in a Name?

This blog post will focus on SARS-CoV-2 Nsp15, a nidoviral RNA uridylate‐specific endoribonuclease (NendoU). That is a very long and complicated name which conveys a lot of information, so let’s break it down into its individual parts, like when Voltron separates to become several small robots. It’s possible I’ve watched too many cartoons during lockdown:

  • Nidoviral – An order of RNA viruses which infect vertebrates and invertebrates.
  • RNA – Genetic material used to produce proteins
  • Uridylate-specific – Cuts Uridine (U) in RNA, not Cytosine (C), Adenine (A) or Guanine (G)
  • Endo – A Greek word meaning inside or within
  • Ribonuclease – An enzyme that cuts RNA into smaller pieces.

So, what’s in a name? Well, Nsp15 is a viral enzyme that likes to cut at uridine (a building block of RNA) in the middle of an RNA sequence. Quite a lot really. The final bit of the name “NendoU” goes into even more specifics on our protein, as it defines a common family of proteins which share certain traits. The first is that when Nsp15 cuts RNA, it gives a 2′‐3′ cyclic phosphodiester and 5′‐hydroxyl terminus. If we look at Figure 2, you’ll see a purple RNA chain made of two bases linked by an orange phosphate in the middle. When RNA is cleaved by Nsp15, a 2′‐3′ cyclic phosphodiester is made: in the two resulting molecules, the phosphate ion has been incorporated into a 5-membered ring (orange), and the other half of the RNA has a 5′‐hydroxyl, or and OH- group on another 5-membered ring (green). The second thing being a member of the NendoU family tells us is that the catalytic domain of the protein (the business end) is found on the C-terminal end of the protein (the latter half) as this is a shared trait within the NendoU family.

The Disastrous Life of Nsp15 Endoribonuclease NendoU 2
Figure 2: RNA Cleavage to give a 2′‐3′ cyclic phosphodiester and 5′‐hydroxyl terminus. Image generated in PyMOL using molecules made with Coot’s Ligand builder by Sam Horrell.

Domains

One Nsp15 monomer is made up of three distinct domains, the aforementioned N-terminal oligomerisation domain (green), a middle domain in… well, the middle (orange), and the catalytic NendoU domain at the C-terminal (purple, Figure 3b). Overall SARS-CoV-2 Nsp15 shows high sequence identity with SARS-CoV Nsp15 (88%) and, somewhat lower identity with MERS-CoV (51%) (Youngchang 2020), but the overall structural similarity is very high between the three viruses. For a more detailed breakdown of the secondary structure that makes up individual Nsp15 domains, check out our proteopedia entry!

The Disastrous Life of Nsp15 Endoribonuclease NendoU 3
Figure 3: Nsp15 monomer coloured by domain. Image generated in PyMOL using PDB 6X4I by Sam Horrell. 

Tertiary Structure

Nsp15 forms a double-ring hexamer made up of a dimer of trimers stabilised by an N-terminal oligomerisation domain. So, three monomers form a trimer which then binds another trimer of monomers. However, If you open a crystal structures this can be confusing as you might not be presented with the whole complex. A crystal is composed of an infinite array of identical (or near enough) molecules related to each other by symmetry. To eliminate the need to store an infinite number of atoms on your computer the PDB file gives you just enough of the crystal to define the unique part. You are then expected to remember that the rest are generated by symmetry. This subset is called the asymmetric unit. Should you want to try and generate the whole crystal you can try, but your computer will likely grind to a halt on its way to infinity (and beyond).

For most structures the asymmetric unit is the interesting part. Often, when the biologically relevant complex has symmetry itself, like Nsp15 does, only part of the complex will be present in the file from the PDB. In the case of the PDB model 6X4I the molecules of each trimer obey the crystal’s three-fold symmetry. The file you download contains two molecules, one monomer from each trimer, and you must generate the symmetry related molecules (shown in green and orange in figure 3) to build the entire complex. These six monomers all come together to form the active enzyme, a 100 Å long and 10-15 Å wide channel, open to solvent from the top, bottom, and three separate side openings in the middle of the hexamer (Figure 4). Formation of the hexamer has been shown to be essential for enzymatic activity, making the oligomerisation interfaces a potential target for structure-based drug design. I’m not sure if I should be proud or disappointed that I didn’t mention Voltron once back there.

The Disastrous Life of Nsp15 Endoribonuclease NendoU 4
Figure 4: The Structure of the Nsp15 hexamer showing a side on view generated by crystallographic symmetry (a) and a top down view (b) looking down the 10-15 Å wide channel. Image generated in PyMOL using PDB 6X4I by Sam Horrell. 

The Active Site

SARS-CoV-2 Nsp15 is a Mn2+ dependent endoribonuclease, meaning it relies on the coordination of manganese to perform the transesterification reaction (cutting RNA). Unfortunately, the structure of SARS-CoV-2 Nsp15 has not been solved with manganese present, but we do have a structure with 3’ uridine monophosphate in the active site (PDBID: 6X4I). It has been proposed that the presence of manganese help stabilise the active site and substrate, but it is yet to been seen. Based on sequence alignment against related enzymes from other viruses we know the active site is made up of six conserved residues that sit in a shallow groove between two β-sheets (His235, His250, Lys290, Thr341, Tyr343, and Ser294), as shown in Figure 5. His235, His250, and Lys290 are predicted to act as a catalytic triad, His235 as a general acid, and His250 as a base with Lys290 governing U specificity.

The Disastrous Life of Nsp15 Endoribonuclease NendoU 5
Figure 5: SARS-CoV-2 Nsp15 active site conserved residues without (top) and with (bottom) 3’ uridine monophosphate. β-sheets are coloured purple, α-helices in orange, loops and ligands in green and waters in red. Image by Sam Horrell generated in PyMOL using PDB 6X4I.

But What Does it do?

After all that we have a pretty clear picture of what Nsp15 NendoU looks like, but what does it actually do? The fact that it cuts RNA would immediately suggest a role in viral replication, but Nsp15 deficient coronaviruses are still able to replicate. So maybe not, at least it's not essential for replication. Another suggestion is that Nsp15 is involved in interfering with the hosts innate immune response, but other studies suggest this is independent of Nsp15 activity. Finally, it has been suggested that Nsp15 degrades viral RNA as a means of hiding viral infection from the host immune system. So why does coronavirus bother with Nsp15? I’m afraid we don’t exactly know yet, but we’re working on it.

With that I’m going to leave you with one final Voltron reference for making it to the end. Good job, you earned this.

The Disastrous Life of Nsp15 Endoribonuclease NendoU 6
Figure 6: A perfectly good use of my time. Nsp15 coloured as Voltron featuring the arm monomers (forest and firebrick), leg monomers (skyblue and yelloworange), chest/back monomers (aquamarine and grey70), all loops (black), waters (white), and bound ligands (cyan). Image by Sam Horrell generated in PyMOL using PDB 6X4I.

Corinna, der Corona-Kaktus

@
Corinna ist das Maskottchen der Task Force und hilft bei allen pflanzenbezogenen Aufgabenstellungen. Frühere Erfahrungen konnte sie schon im Baumarkt sammeln, und auch wenn sie manchmal etwas kratzbürstig sein kann, liebt sie es doch zu kuscheln und in der Sonne zu liegen
Mehr über diesen Autor

Helen Ginn

Senior Research Scientist @ Diamond Light Source, Oxfordshire, UK
Dr. Helen Ginn ist leitende Wissenschaftlerin am Diamond Light Source Institut in Großbritannien und Methodenentwicklerin für die Strukturbiologie. Derzeit arbeitet sie an der Darstellung von Proteineinheiten (Representation of Protein Entities, RoPE) für Strukturbiologen. Sie hat die Software Vagabond zur torsionswinkelgesteuerten Modellverfeinerung und cluster4x zur Gruppierung von Datensätzen entwickelt. Zu ihren Forschungsinteressen gehört auch die Kartierung […]
Mehr über diesen Autor

Nick Pearce

Assistant Professor @ SciLifeLab DDLS Fellow
Nicholas Pearce machte 2012 seinen Bachelor in Physik an der Universität Oxford und promovierte 2016 in Systems Approaches to Biomedical Sciences. Im Jahr 2017 zog er nach Utrecht in den Niederlanden, um mit Piet Gros zu arbeiten. Dort erhielt er ein EMBO-Langzeitstipendium und arbeitete an der Analyse von Unordnung in makromolekularen Strukturen. Anschließend erhielt er […]
Mehr über diesen Autor

Mathias Schmidt

Student der Molecular Life Sciences (M.Sc.) @ Universität Hamburg
Mathias macht momentan seinen Master in Molecular Life Sciences an der Universität Hamburg und ist seit März 2022 Hilfswissenschaftler in der Corona Structural Taskforce. Dort beschäftigt er sich mit der Frage nach dem Ursprung von SARS-CoV-2. Sein Forschungsschwerpunkt im Studium liegt auf der Entwicklung von synthetischen, molekularen Mechanismen zur Regulierung von Genen in pflanzlichen wie […]
Mehr über diesen Autor

David Briggs

Principal Laboratory Research Scientist @ Francis Crick Institute in London, UK
David Briggs ist Principal Laboratory Research Scientist im Labor für Signal- und Strukturbiologie am Francis Crick Institute in London, UK. Als ausgebildeter Kristallograph konzentriert sich seine Arbeit auf die biophysikalische und strukturelle Charakterisierung menschlicher extrazellulärer Proteine, die an der Synapse beteiligt sind und wichtige Auswirkungen auf psychiatrische und neurodegenerative Störungen haben. Er ist auch an […]
Mehr über diesen Autor

Lisa Schmidt

Webentwicklerin und Illustratorin @ Mullana
Lisa Schmidt ist freiberufliche Illustratorin und studierte Multimedia und Kommunikation (BA) in Ansbach, Deutschland. Ihre Arbeit konzentriert sich auf die Visualisierung von Wissenschaft und Technik. Sie ist als Mediengestalterin bei der Coronavirus Structural Task Force tätig, wo sie Webdesign, 3D-Rendering für wissenschaftliche Illustrationen und Öffentlichkeitsarbeit betreibt.
Mehr über diesen Autor

Philip Wehling

Student der Nanowissenschaften (M.Sc.) @ Institut für Nanostruktur und Festkörperphysik, Universität Hamburg
Philip begeistert sich schon lange für biologische Prozesse und verfügt über ein analytisches Weltverständnis. Nachdem er lange Zeit als Krankenpfleger in verschiedenen Bereichen gearbeitet hat, studierte er zunächst Mathematik und schließlich Nanowissenschaften. Im Rahmen einer Ringvorlesung zur Vorbereitung einer Bachelorarbeit kam er mit der Proteinkristallographie in Berührung und beginnt nun, sich als Mitglied des Thorn […]
Mehr über diesen Autor

Binisha Karki

Wissenschaftliche Mitarbeiterin @ BioNTech SE
Binisha ist als wissenschaftliche Mitarbeiterin bei BioNTech angestellt und arbeitet an der Entwicklung von Impfstoffen gegen COVID-19 sowie Krebsimmuntherapien. Sie beendete ihr Studium der Molekularbiologie an der Southeastern Louisiana University im Mai 2019. Anschließend arbeitete sie als Forschungstechnikerin im Chodera-Lab, wo sie biophysikalische Messungen an Modellen von Protein-Liganden-Systeme für computerchemische Benchmarks durchführte.
Mehr über diesen Autor

Hauke Hillen

Juniorprofessor an der Universitätsmedizin Göttingen & Gruppenleiter am MPI für Biophysikalische Chemie @ Universitätsmedizin Göttingen
Hauke ist Biochemiker und Strukturbiologe. Mit seinem Forschungsteam untersucht er mittels Röntgenkristallografie und Kryo-Elektronenmikroskopie die Struktur und Funktion von molekularen Maschinen, die für die Genexpression in eukaryotischen Zellen verantwortlich sind. Er interessiert sich dabei besonders dafür wie genetisches Material außerhalb des Zellkerns exprimiert wird, zum Beispiel in menschlichen Mitochondrien oder durch Viren im Zytoplasma.
Mehr über diesen Autor

AG Richardson

AG Richardson @ Duke University, Durham, North Carolina, USA
Das Langzeitziel der AG Richardson ist ein tieferes Verständnis der dreidimensionalen Strukturen von Proteinen und RNA zu erhalten, einschließlich ihrer Beschreibung, Einflussfaktoren, Faltung, Evolution und Regulation. Hierbei verwenden die Richardsons strukturelle Bioinformatik, makromolekulare Kristallographie, Molekülgrafik, Strukturanalyse und Methodenentwicklung, insbesondere bei der Verbesserung der Genauigkeit von molekularen Strukturen. Im Projekt arbeiten und bewerten sie die Geometrie […]
Mehr über diesen Autor

Holger Theymann

Agile-Leadership-Coach @ mehr-Freu.de GmbH
Holger hält Webseiten am Laufen. Er zaubert Daten aus wissenschaftlichen Datenbanken in hübsche Tabellen. Er hat außerdem ein Auge darauf, dass die Seiten schnell, sicher und zuverlässig ist. Seine Erfahrung als Software-Entwickler, Software-Architekt, Agiler Projektmanager und Coach halfen der Task Force, dass der ganze Prozess rund lief. Außerdem zeigt er den Mitgliedern der Task Force, […]
Mehr über diesen Autor

Ezika Joshua Onyeka

Public Health M.Sc. Student @ Hamburg University
Joshua arbeitet als studentische Hilfskraft im Thorn Lab. Er hat einen Bachelor-Abschluss in Public Health und ist derzeit an der Hochschule für Angewandte Wissenschaften Hamburg (HAW) für seinen MPH eingeschrieben. Er hat bei der Umsetzung einiger Impfprogramme geholfen, um die Impfrate zu verbessern und bei der Ausbildung von medizinischem Personal in Hinblick auf die Impfstrategie. […]
Mehr über diesen Autor

Florens Fischer

Student der Biologe (M.Sc.) @ Rudolf-Virchow-Zentrum, Universität Würzburg
Florens studiert Biologie (M.Sc.) und unterstützte als Hilfswissenschaftler die Task Force. Sein Fokus lag dabei in der Bioinformatik und er unterstützt die Arbeiten wie Automatisierung von Programmcode und Strukturierung von Big Data mit Hilfe von Machine Learning. Außerdem unterstützte er das Team in anderen Bereichen, wie zum Beispiel in der wissenschaftlichen Recherche.
Mehr über diesen Autor

Katharina Hoffmann

Studentin der Molekularbiologie (M.Sc.) @ Institut für Nanostruktur und Festkörperphysik, Universität Hamburg
Katharina hat im AK Thorn als Hiwi gearbeitet. Normalerweise studiert sie im Master Molekularbiologie an der Uni Hamburg. In ihrer durch Corona auf Eis gelegten Masterarbeit beschäftigt sie sich mit der Unterbrechung bakterieller Kommunikation. Seit dem Lockdown treibt sie sich in Datenbanken rum und analysiert Sequenzen. Sie hätte nie gedacht, so nah an die Strukturbiochemie […]
Mehr über diesen Autor

Nicole Dörfel

Mediengestalterin @
Nicole Dörfel sorgt dafür, dass wir und unsere Arbeit gut aussehen! Sie ist die Illustratorin, Mediengestalterin und künstlerische Seele der Task Force. Ihren Pinsel schwingt sie sowohl im Printbereich als auch digital – stets mit der Spezialisierung auf Mediendesign. Für die Task Force ist Nicky vor allem zuständig für Grafikdesign, sämtliche Werbematerialien (für die Öffentlichkeitsarbeit) […]
Mehr über diesen Autor

Pairoh Seeliger

Verwaltungsassistentin @ Institut für Nanostruktur und Festkörperphysik, Universität Hamburg
Pairoh Seeliger entlastet als die Assistentin der Task Force die Wissenschaftler. Sie kümmert sich um Medienanfragen, Sprachprobleme und logistische Aufgaben aller Art. Außerdem bewertet sie die Verständlichkeit und Sprache unserer deutschen Öffentlichkeitsarbeit. Sie bezeichnet sich selbst als "Mädchen für Alles mit Germanistikstudium und kaufmännischer Ausbildung. Spezialität: Pfefferminztee".
Mehr über diesen Autor

Oliver Kippes

Student der Biochemie (B.Sc.) @ Rudolf-Virchow-Zentrum, Universität Würzburg
Oliver studiert Biochemie und hat vor seinem Studium eine Ausbildung als Fachinformatiker absolviert. Mithilfe des kombinierten Wissens seines Studiums und seiner Ausbildung hilft er bei der Verwaltung der Strukturdatenbank, programmiert Anwendungen für diese und unterstützt das Team bei Literaturrecherchen. Die Strukturbiologie war für Oliver trotz seines Studiums ein noch neues Themenfeld, das er mit großer […]
Mehr über diesen Autor

Luise Kandler

Studentin der Biochemie (B.Sc.) @ Rudolf-Virchow Zentrum, Julius-Maximilians-Universität Würzburg
Luise studiert Biochemie und ist der Task Force während des ersten Corona-Lockdowns beigetreten. Ihre Bachelorarbeit mit Fokus auf Computer anwendung hat sie im AK Thorn geschrieben. In der Task Force nutzt sie ihr biochemisches Wissen für Literaturrecherchen und versucht, die besten Visualisierungen von Molekülen des Coronavirus zu finden. Nichtsdestotrotz lernt Luise nebenbei auch Python und […]
Mehr über diesen Autor

Ferdinand Kirsten

Student der Biochemie (B.Sc.) @ Rudolf-Virchow-Zentrum, Universität Würzburg
Ferdinand hat am AK Thorn seine Bachelorarbeit über Lösungsmittelaustausch und Interaktion in makromolekularen Kristallen angefertigt. Als Novize in der Welt der Kristallographie und der Strukturaufklärung hilft er, wo er kann, wobei sein Hauptaugenmerk auf Literatur- und Genom-Recherchen sowie der Strukturverfeinerung liegt. Auch wenn er sich eigentlich mehr als „Ich will aber was anfassen und im […]
Mehr über diesen Autor

Kristopher Nolte

Student der Biochemie (B.Sc.) @ Rudolf-Virchow Zentrum, Julius-Maximilians-Universität Würzburg
Kristopher trat dem AK Thorn im Rahmen seiner Bachelorarbeit bei. In dieser Arbeit hat er AUSPEX mit Hilfe maschinellen Lernens verfeinert. Da aber die Coronakrise unser aller Leben zum Stillstand gebracht hat, trägt er nun zur Task Force bei, indem er seine Kenntnisse der Bioinformatik und Programmierung nutzt, um alle Coronavirus-relevanten Daten aus der PDB […]
Mehr über diesen Autor

Toyin Akinselure

Studentin der Nanowissenschaften (M.Sc.) @ Institut für Nanostruktur und Festkörperphysik, Universität Hamburg
Toyin ist Mikrobiologin und derzeit Masterstudentin der Nanowissenschaften mit den Schwerpunkten Nanobiologie und Nanochemie. Sie interessiert sich für wissenschaftliche Forschung, insbesondere für Proteinchemie und Wirkstoffentwicklung. Im letzten Herbst und Winter hat sie ein Praktikum bei zwei Forschungsprojekten gemacht, eines in der Wirkstoffforschung und das andere in der Proteinstrukturaufklärung. Sie fand beide spannend und hofft, ihr […]
Mehr über diesen Autor

Erik Nebelung

Student der Nanowissenschaften (M.Sc.) @ Institut für Nanostruktur und Festkörperphysik, Universität Hamburg
Erik studiert Nanowissenschaften mit Fokus auf biochemischen Anwendungen und Methoden. Zwischen August 2020 und Januar 2021 führte er im iNano Institute in Aarhus sein Studium fort, inzwischen hat er – zurück in Hamburg – seine Masterarbeit begonnen. In seiner Bachelorarbeit kam er bereits in den Genuss, Proteine zu kristallisieren, was seine Faszination für Biomoleküle nur […]
Mehr über diesen Autor

Lea von Soosten

Studentin der Physik (M.Sc.) @ Institut für Nanostruktur und Festkörperphysik, Universität Hamburg
Lea studiert Physik im Master und interessiert sich für alles, was mit Biologie zu tun hat. Obwohl sie aus einem anderen Bereich kommt, ist sie dem Team beigetreten, um ihr Wissen über Biochemie zu erweitern und der Task Force mit Schwerpunkt auf Literaturrecherche zu helfen. Außerdem liebt sie es, zu zeichnen!
Mehr über diesen Autor

Sabrina Stäb

Studentin der Biotechnologie (M.Sc.) @ Institut für Nanostruktur und Festkörperphysik, Universität Hamburg
Sabrina studiert Biochemie und arbeitet als Hilfswissenschaftlerin im AK Thorn und in der CSTF. Durch ihre Bachelorarbeit zur „Kristallisation und Strukturlösung von qualitativ hochwertigen Strukturen für MAD-Experimente“ konnte sie reichlich Erfahrung im Bereich Kristallographie sammeln und bringt diese nun im Projekt ein. Wenn sie nicht gerade wegen COVID-19 daheim bleiben muss, verbringt sie ihre Freizeit […]
Mehr über diesen Autor

Alexander Matthew Payne

Doktorand der Chemischen Biologie @ Chodera Lab, Memorial Sloan Kettering Center for Cancer Research, New York, USA
Alex ist ein Doktorand, der verstehen möchte, wie sich Proteine bewegen. Er arbeitet seit kurzem in den Laboren von John Chodera und Richard Hite an einem Projekt zwischen Molekulardynamik und Cryo-EM. Sein Ziel ist es, Konformationsensembles aus Cryo-EM-Daten zu generieren und diese mithilfe von Massive Scale Molecular Dynamics über Folding@home zu simulieren. Er ist auch […]
Mehr über diesen Autor

Maximilian Edich

Doktorand der Bioinformatik @ Institut für Nanostruktur und Festkörperphysik, Universität Hamburg
Max hat seinen Master in Bioinformatik und Genomforschung in Bielefeld absolviert und ist 2021 als Doktorand der CSTF beigetreten. Sein Fokus lag bis dato auf dem molecular modeling und nun beschäftigt er sich mit der sogenannenten R-factor gap. Als Teilnehmer des iGEM Wettbewerbs konnte er bereits 2017 erleben, was es heißt Teil eines jungen und […]
Mehr über diesen Autor

Agnel Praveen Joseph

Computerwissenschaftler @ Science and Technology Facilities Council, UK
Dr. Agnel Praveen ist Methodenentwickler im CCP-EM Team des Science and Technology Facilities Councils des Vereinigten Königreichs (STFC UK). Sein Hauptaugenmerk liegt auf verschiedenen Herangehensweisen, um atomare Cryo-EM-Modelle und Rekonstruktionsdichten zu interpretieren und zu bewerten. Ebenso gehören computerbasierte Methoden zur Interpretation von Cryo-ET-Daten zu seinem Abeitsfeld. Zusammen mit fünf anderen Gruppen in Großbritannien arbeitet er […]
Mehr über diesen Autor

Dale Tronrud

Freier Wissenschaftler @
Dr. Dale Tronrud löst Proteinkristallstrukturen und entwickelt Methoden und Software zur Optimierung makromolekularer Modelle gegen Röntgendaten und chemisches Vorwissen. Seine Interessen umfassen Enzym-Inhibitor-Komplexe und Photosyntheseproteine, mit einem Schwerpunkt auf dem Fenna-Matthews-Olson Protein. Darüberhinaus ist er auch an der Validierung und Korrektur vieler PDB Modelle beteiligt gewesen. Bei all diesen Projekten ist es essenziell, die richtige […]
Mehr über diesen Autor

Sam Horrell

Beamline-Wissenschaftler @ Diamond Light Source, Oxfordshire, Großbritannien
Dr. Sam Horrell ist Struktubiologe in der Methodenentwicklung am Teilchenbeschleuniger Diamond Light Source, insbesondere Methoden, um die Funktion von Enzymen mit Strukturfilmen besser aufklären zu können. Im Projekt arbeitet sich Sam durch die deponierten SARS-CoV und SARS-CoV-2-Strukturen, um das bestmögliche Modell für zukünftige Arzneimittelentwicklung zu finden. Er kommuniziert gerne über seine und andere Wissenschaft und […]
Mehr über diesen Autor

Cameron Fyfe

Postdoc @ Micalis Institute, INRAE, Paris, France
Cameron ist ein Strukturbiologe, der sich bisher ausgiebig mit Proteinen aus Mikroorganismen beschäftigt hat. Er hat langjährige Erfahrung in der pharmazeutischen Industrie und der strukturbiologischen Forschung. In der Task Force möchte er seine Fähigkeiten zur Verbesserung bestehender Modelle für die Medikamentenentwicklung einsetzen. Derzeit forscht er am INRAE an radikalen SAM-Enzymen. Wenn er nicht im Labor […]
Mehr über diesen Autor

Tristan Croll

Postdoc @ Cambridge Institute for Medical Research, University of Cambridge
Dr. Tristan Croll ist Spezialist für die Modellierung atomarer Strukturen in schlecht aufgelösten kristallographischen und Kryo-EM-Dichtekarten und der Entwickler des Modellbauprogramms ISOLDE. Sein Hauptaugenmerk liegt auf der Korrektur der verschiedenen Fehler in der Molekülgeometrie oder bei inkorrekter Dichteinterpretation, die in schlecht aufgelösten Teilen der Dichte vorkommen, mit dem Ziel, den Modellbau bei 3 Angström auf […]
Mehr über diesen Autor

Gianluca Santoni

Forscher für Daten in der seriellen Kristallographie @ European Synchrotron Radiation Facility, Grenoble, Frankreich
Dr. Gianluca Santoni ist Experte für proteinkristallographische Datensammlung und -analyse. Nach seiner Doktorarbeit in strukturbasiertem Wirkstoffdesign hat er als Postdoc am Strahlrohr ID23-1 der European Synchrotron Radiation Facility (ESRF) gearbeitet und die SSX-Datenanalysesoftware ccCluster entwickelt. Mittlerweile interessiert er sich für die Optimierung von Messstrategien für die Datensammlung von mehreren Kristallen und ist außerdem der wissenschaftliche […]
Mehr über diesen Autor

Yunyun Gao

Postdoc im AUSPEX-Projekt @ Institut für Nanostruktur & Festkörperphysik, Universität Hamburg
Yunyun Gao ist Methodenentwickler für Analysestrategien für Biomolekül-Daten. Bevor er zur Thorn-Gruppe kam, arbeitete er an SAXS/WAXS von Polymeren und Proteinen. Er will Datenanalysen objektiver und zuverlässiger  machen. Yunyun erweitert zur Zeit die Funktionalität von AUSPEX. In der Coronavirus Structural Taskforce managt er die Datenbank und alles, was mit AUSPEX zu tun hat.
Mehr über diesen Autor

Johannes Kaub

Wissenschaftlicher Koordinator @ Institut für Nanostruktur & Festkörperphysik, Universität Hamburg
Johannes Kaub hat Chemie, Schwerpunkt Physikalische Festkörperchemie, an der RWTH Aachen studiert und war anschließend als wissenschaftlicher Mitarbeiter am Max-Planck-Institut für Struktur und Dynamik der Materie beschäftigt. Die Coronavirus Structural Task Force unterstützt er als wissenschaftlicher Koordinator mithilfe seiner organisatorischen Fähigkeiten und seiner Begabung fürs Lösen von Problemen. Neben der Wissenschaft gilt seine größte Leidenschaft […]
Mehr über diesen Autor

Andrea Thorn

Gruppenleiterin @ Institut für Nanostruktur und Festkörperphysik, Universität Hamburg
Dr. Andrea Thorn ist Spezialistin für die Strukturlösung mit kristallographischen Methoden und Kryo-Elektronenmikroskopie. Sie hat in der Vergangenheit zu Programmen wie SHELX, ANODE und (etwas) PHASER beigetragen. Ihre Arbeitsgruppe entwickelt die Diffraktionsdaten-Analysesoftware AUSPEX, ein neuronales Netzwerk zur Sekundärstrukturannotation in Kryo-EM Dichtekarten (Haruspex) und ermöglicht anderen Wissenschaftlern die Lösung schwieriger Strukturen. Andrea hat eine Leidenschaft für […]
Mehr über diesen Autor

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert

cross