Where are the drugs?

June 17, 2021
Katharina Hoffmann

Why are vaccines developed so quickly and treatments so slowly?

In March 2020, the WHO declared COVID-19 a pandemic. Since then, 14 vaccines have entered the global market[1], and the number of immunized people grows every day. Even though vaccine development has never been this fast in history and will save many lives worldwide, people are still getting infected. To save patients afflicted with severe cases of COVID-19 and prevent health care systems from collapsing, effective drug treatments are the next step. But shouldn’t there already be drugs available?

What is the difference between vaccines and drug treatments?

While vaccines protect non-infected people from future infections, drugs help sick people. They alleviate symptoms and shorten the time to recuperate. Vaccines are important to combat a disease in the long run, through reaching herd immunity and protecting risk groups that would otherwise not survive an infection. Drugs, however, are equally important to fight acute infections.

How are vaccines developed?

First, scientists study the pathogen and its way of causing a disease in detail. Researchers then present a part of the virus that can be targeted by a vaccine for further investigation. This first lab stage is called the "research & discovery stage". What follows are pre-clinical trials, which are carried out in animals or cultured cell lines. Here, scientists prove that their vaccine candidate can cause an immune response and is not toxic.

If all data collected until this point looks promising, a clinical trial to test the vaccine in humans follows:

  • Phase I examines the safety and dose for the vaccine, as well as the immune response.
  • Phase II tests safety, efficacy, dosing, and immune response in a larger and more diverse group of people.
  • Phase III tests the vaccine on thousands of subjects to determine efficacy and side effects.
  • If successful, the vaccine is approved by the FDA in the US or the EMA in the EU. After approval, the vaccine is monitored in the real world, and more data is collected.
Phases of a clinical trial overview. Source: https://lupustrials.org/about-trials/phases-of-a-trial/
Figure 1: Phases of a Clinical Trial, taken from https://lupustrials.org/about-trials/phases-of-a-trial/.

How come it progressed so fast for the coronavirus?

On January 10th, 2020, the genome of SARS-CoV-2 was published by a consortium of Chinese and Australian scientists[2]. This started global efforts to develop vaccines. For the first time, corporations, governments, and scientists from academia worked together on this scale to end the pandemic. The first vaccine approved in the western world was Pfizer-BioNTech in December 2020 (approved in the EU[3] and the US[4]). It took eleven months, a record time never reached for any other vaccine in history.

The fastest vaccine developed before COVID-19 was the mumps vaccine in the 1960s[5]. It took only four years to develop, which is amazingly fast compared to the average 10 years it takes for a vaccine to progress from basic research to approval[6]. Given this info, how was it possible to get SARS-CoV-2 vaccines ready in less than a year?

First, SARS-CoV-2 did not come out of nowhere, entirely. For years scientists have been studying its relatives SARS and MERS, their way of infecting cells, their proteins, and genetics[7]. Because of that, scientists did not have to start from scratch with researching these matters for the new coronavirus. Of course, there are differences, but the viruses’ general framework shows many similarities.

The cost of developing a vaccine, on average, surpasses the 1-billion-dollar mark[8], with a lot of the money spent on candidates that turn out to be failures. For many infectious diseases, funding simply cannot be sustained throughout development, especially if the disease is rare or occurs only locally. This was not a problem for the development of SARS-CoV-2 vaccines. Massive funding from governments and companies gave scientists more than enough resources to test their vaccine candidates. Also, because of all these resources, the developers were able to run several stages of testing in parallel[9].

Probably the most interesting reason for having vaccines this fast are the new vaccine technologies that have been developed since the turn of the century: mRNA and vector vaccines. Scientists often refer to them as vaccine platforms because they are technologies into which you only need to insert the part that is specific to a virus. For this, you need the virus’ genetic information, which was published early in this pandemic. Vaccine developers then inserted SARS-CoV-2 into their systems and were ale to quickly procede with the trials.

In the past, inactivated viruses or isolated viral proteins were used in vaccines. These, however, are highly specific to the virus you are trying to fight. This means, it was necessary to start at a basic level again every time a new vaccine was developed. Researchers hope that through these new vaccine platforms, the time for vaccine development in general will be a lot shorter in the future.

How is drug development different and why does it take so long?

The development of a new drug takes years, too. Generally, the timelines for drug and vaccine development show similar steps: Research & discovery, pre-clinical and clinical trials, approval and monitoring also apply for drug development.

Reaching the approval of an effective drug costs around $1,335.9 million[10], and failures are possible at every step of the way—like promising candidates from the pre-clinical stages showing no effect in humans, etc.

However, when comparing modern drug development to the new vaccine platforms, we can see just how much more complicated it is. Antiviral drugs are molecules that interact with parts of the virus and block it from entering a cell, stop it from replicating or stop another vital step of the infection path. There are also drugs that interact with parts of our own immune system to stop the disease from escalating.

Structurally, a drug candidate has to exactly fit its target, which is often a protein. This triggers two problems: What target should be chosen and what should the drug molecule look like.

Nowadays, millions of molecules are screened for their interaction with viral targets. This is done through computerized models but still takes a lot of time. Once there is a lead structure—a potentially effective molecule—, it is tested in pre-clinical trials and optimized structurally. During optimization, many hundreds of similar molecules are compared to see if their properties improve.

Different approaches to develop a drug take different amounts of time. One shortcut to developing an effective treatment is the repurposing of an already approved drug or a shelved candidate. The second fastest way is to develop a therapeutic antibody, followed by classic screening for a new drug.

Repurposing drugs for new diseases

Reusing drugs or drug candidates that have already been evaluated for safety greatly shortens the development time. It is even better when an already approved drug or a drug that is already backed with significant data from human trials shows an effect on the new disease.

An example for this is the first HIV medication AZT. It was first developed in 1964 as a potential cancer therapy, but later was found not to be very effective. In the 1980s, it was included in a screening for AIDS treatment and was found to interfere with HIV’s replication. It was later shown to decrease the death rate in people with AIDS and subsequently approved for treatment[11].

Remdesivir—a dead end?

Remdesivir is an antiviral drug that was designed to interfere with the replication of the genome of RNA-based viruses. The drug was first developed as a potential treatment for hepatitis C and respiratory syncytial virus and was later tested against the Ebola virus[12], which did not lead to convincing results[13].

But what do COVID-19 studies with remdesivir say?

The EU and US approved this medication in 2020 based on trials with patients that had moderate or severe cases. One study found that hospitalized patients with moderate COVID-19 benefited from a 5-day treatment with remdesivir.[14] For severe cases, there is some evidence that remdesivir could shorten the time to recuperate better than a placebo[15].

But the WHO is now advising against using the drug based on a meta-analysis they did. This convinced the EMA to re-evaluate remdesivir and maybe even take back the approval in the EU[16]. In the WHO study, the effect of four repurposed COVID-19 treatments—including remdesivir—on 11,330 adults was examined[17]. In this analysis, remdesivir showed little to no effect on hospitalized patients with COVID-19, as indicated by overall mortality, need of artificial ventilation, and length of hospital stay.

The other repurposed drugs from the WHO analysis were hydroxychloroquine (a treatment used against malaria), Lopinavir (a protease inhibitor used against HIV), and interferon beta-1a (an immune modulating drug for MS treatment). None of these showed a beneficial effect against acute COVID-19.

Dexamethasone is a success

The most dangerous aspect of a COVID-19 infection is that the person’s immune system overreacts and attacks the body in addition to the virus. Steroids are often used to dampen an immune response, so the commonly available drug dexamethasone was tried as a treatment. This has proven to be highly effective and has now become part of the standard care for COVID-19 patients[18].

Other drugs currently under evaluation

Monoclonal antibody treatments are currently under review in the EU and US.[19] Their effect: When the antibody attaches to the spike protein, the virus cannot enter the body’s cells, depriving it of its means of replication. Some of these treatments are combinations of two different antibodies that can attach to different parts of the spike, in theory, binding it more effectively.

The three treatments currently in the EMA review pipeline are: bamlanivimab and etesevimab, REGN-COV2[20], and regdanvimab[21]. The FDA[22] has authorized several monoclonal antibodies for emergency use and they have been shown to be effective at reducing the symptoms of COVID-19 if administrated early in the course of the disease[23].

Antibodies can block SARS-CoV-2 infection. When antibodies are targeting the spike protein, it fails to bind to the human ACE2 receptor and cannot enter our cells. An infection is blocked. Alternationbased on Whittaker and Daniel (Natur, 2020).
Figure 2: Antibodies can block SARS-CoV-2 infection. When antibodies are targeting the spike protein, it fails to bind to the human ACE2 receptor and cannot enter our cells. An infection is blocked. Alternation based on Whittaker and Daniel (Nature, 2020).

Ongoing efforts

As there is more and more structural data available on SARS-CoV-2’s proteins, there are also more interaction studies with potential drug molecules and combinations.

Still, drug development takes time. In comparison to vaccines, which have just had a technology revolution, drugs will take longer from basic research to being ready for use. But there are already many different types of drugs under development, since funding is not a problem for COVID-19 treatments, and international collaboration speeds up the process as well.

Whether any of the current candidates will prove effective in treating COVID-19, remains to be seen. Maybe even a combined therapy with multiple drugs could be used to achieve the desired outcome.

[1] https://www.unicef.org/supply/covid-19-vaccine-market-dashboard

[2] https://virological.org/t/novel-2019-coronavirus-genome/319

[3] https://www.ema.europa.eu/en/medicines/human/EPAR/comirnaty

[4] https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/pfizer-biontech-covid-19-vaccine

[5] Tulchinsky, Theodore H.. “Maurice Hilleman: Creator of Vaccines That Changed the World.” Case Studies in Public Health (2018): 443–470. doi:10.1016/B978-0-12-804571-8.00003-2

[6]COVID-19 vaccine development pipeline gears up. Mullard, Asher. The Lancet, Volume 395, Issue 10239, 1751 - 1752

[7] Abdelrahman Zeinab, Li Mengyuan, Wang Xiaosheng. Comparative Review of SARS-CoV-2, SARS-CoV, MERS-CoV, and Influenza A Respiratory Viruses. Frontiers in Immunology 11 (2020). doi:10.3389/fimmu.2020.552909   

[8]Estimating the cost of vaccine development against epidemic infectious diseases: a cost minimisation study, Gouglas, Dimitrios et al. The Lancet Global Health, Volume 6, Issue 12, e1386 - e1396

[9] https://www.nature.com/articles/d41586-020-03626-1

[10] Wouters OJ, McKee M, Luyten J. Estimated Research and Development Investment Needed to Bring a New Medicine to Market, 2009-2018. JAMA. 2020;323(9):844–853. doi:10.1001/jama.2020.1166

[11] https://www.niaid.nih.gov/diseases-conditions/antiretroviral-drug-development

[12] https://www.gilead.com/-/media/gilead-corporate/files/pdfs/covid-19/gilead_rdv-development-fact-sheet-2020.pdf

[13] Pardo, Joe et al. “The journey of remdesivir: from Ebola to COVID-19.” Drugs in context vol. 9 2020-4-14. 22 May. 2020, doi:10.7573/dic.2020-4-14

[14] https://jamanetwork.com/journals/jama/fullarticle/2769871

[15] https://www.nejm.org/doi/10.1056/NEJMoa2007764

[16] https://www.ema.europa.eu/en/news/update-remdesivir-ema-will-evaluate-new-data-solidarity-trial

[17] Repurposed Antiviral Drugs for Covid-19 — Interim WHO Solidarity Trial Results.  384, 497-511 (2020).

[18] https://www.covid19treatmentguidelines.nih.gov/immunomodulators/corticosteroids/

[19] https://www.ema.europa.eu/en/human-regulatory/overview/public-health-threats/coronavirus-disease-covid-19/treatments-vaccines/treatments-covid-19/covid-19-treatments-under-evaluation

[20] https://www.ema.europa.eu/en/news/ema-starts-rolling-review-regn-cov2-antibody-combination-casirivimab-imdevimab

[21] https://www.ema.europa.eu/en/news/ema-starts-rolling-review-celltrion-antibody-regdanvimab-covid-19

[22] https://www.fda.gov/consumers/consumer-updates/know-your-treatment-options-covid-19

[23] https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-monoclonal-antibodies-treatment-covid-19-

Corinna the Corona Cactus

Corinna works as an outreach person for all plant-related business and as a mascot. She gathered previous experience in the garden center, and even though she can be a bit spiky, she likes to cuddle and lie in the sun.
More about this author

Helen Ginn

Senior Research Scientist @ Diamond Light Source, Oxfordshire, UK
Dr Helen Ginn is a senior research scientist at Diamond Light Source in the UK and a computational methods developer in structural biology. She is currently working on Representation of Protein Entities (RoPE) for structural biologists to interpret subtle conformational changes in dynamic protein systems. She has developed Vagabond for torsion angle-driven model refinement and […]
More about this author

Nick Pearce

Assistant Professor @ SciLifeLab DDLS Fellow
Nick obtained his undergraduate degree in Physics from the University of Oxford in 2012, and then his PhD in Systems Approaches to Biomedical Sciences in 2016. He moved to Utrecht in the Netherlands in 2017 to work with Piet Gros, where he obtained an EMBO long-term fellowship and worked on analysing disorder in macromolecular structures. […]
More about this author

Mathias Schmidt

Molecular Life Sciences M.Sc. Student @ Hamburg University
Mathias is currently doing his Master's degree in Molecular Life Sciences at the University of Hamburg and has been an auxiliary scientist in the Corona Structural Taskforce since March 2022. There he is working on the question of the origin of SARS-CoV-2. His undergraduate research focuses on the development of synthetic molecular mechanisms to regulate […]
More about this author

David Briggs

Principal Laboratory Research Scientist @ Francis Crick Institute in London, UK
David Briggs is a Principal Laboratory Research Scientist in the Signalling and Structural Biology lab at the Francis Crick Institute in London, UK. A crystallographer by training, his work focuses on the biophysical and structural characterisation of human extracellular proteins involved in the synapse, which have important ramifications in both psychiatric and neurodegenerative disorders. He […]
More about this author

Lisa Schmidt

Web Developer and Illustrator @ Mullana
Lisa Schmidt is a freelance illustrator who studied Multimedia and Communication (BA) in Ansbach, Germany. Her work is focused on visualising topics around science and technology. She joined the Coronavirus Structural Task Force as media designer, where she does web design, 3D rendering for scientific illustrations and outreach work.
More about this author

Philip Wehling

Nanosciences M.Sc. Student @ Institute for Nanostructure and Solid-State Physics, Hamburg University
Philip has long had an enthusiasm for biological processes which is paired with an analytical understanding of the world. After having worked for a long time as a registered nurse in various fields, he first studied mathematics and finally nanosciences. During a lecture series in preparation for a bachelor's thesis, he came into contact with […]
More about this author

Binisha Karki

Postdoctoral Research Associate @ BioNTech SE
Binisha works as a research associate at BioNTech where she works on the development of COVID-19 vaccine and cancer immunotherapies. She graduated as a Molecular Biology major from Southeastern Louisiana University in May 2019. Post-graduation she worked as a research technician in the Chodera Lab performing biophysical measurements of model protein-ligand systems for computational chemistry […]
More about this author

Binisha Karki

Wissenschaftliche Mitarbeiterin @ BioNTech SE
Binisha ist als wissenschaftliche Mitarbeiterin bei BioNTech angestellt und arbeitet an der Entwicklung von Impfstoffen gegen COVID-19 sowie Krebsimmuntherapien. Sie beendete ihr Studium der Molekularbiologie an der Southeastern Louisiana University im Mai 2019. Anschließend arbeitete sie als Forschungstechnikerin im Chodera-Lab, wo sie biophysikalische Messungen an Modellen von Protein-Liganden-Systeme für computerchemische Benchmarks durchführte.
More about this author

Hauke Hillen

Assistant Professor at the University Medical Center Göttingen & Group Leader at the MPI for Biophysical Chemistry @ University Medical Center Göttingen
Hauke ist Biochemiker und Strukturbiologe. Mit seinem Forschungsteam untersucht er mittels Röntgenkristallografie und Kryo-Elektronenmikroskopie die Struktur und Funktion von molekularen Maschinen, die für die Genexpression in eukaryotischen Zellen verantwortlich sind. Er interessiert sich dabei besonders dafür wie genetisches Material außerhalb des Zellkerns exprimiert wird, zum Beispiel in menschlichen Mitochondrien oder durch Viren im Zytoplasma.
More about this author

Richardson Lab

Richardson Lab @ Duke University, Durham, North Carolina, USA
The long-term goal of the Richardson lab is to contribute to a deeper understanding of the 3D structures of proteins and RNA, including their description, determinants, folding, evolution, and control. Their approaches include structural bioinformatics, macromolecular crystallography, molecular graphics, analysis of structures, and methods development, currently focussed on the improvement of structural accuracy. In this […]
More about this author

Holger Theymann

Agile Leadership Coach @ mehr-Freu.de GmbH
Holger keeps websites running. He makes data from scientific databases appear in nice tables. He also has an eye on keeping the sites fast, safe and reliable. His experience as a software developer, systems architect, agile project manager and coach enabled the Task Force to get the whole process well organized and he even taught […]
More about this author

Florens Fischer

Biology M.Sc. Student @ Rudolf Virchow Center, Würzburg University
Florens is studying biology (M.Sc.) and worked in the Task Force as a student assistant. He has focused on bioinformatics and supports the work on automation of scripts and structuralization of big data with machine learning. He also supported the team in other areas, such as scientific research.
More about this author

Ezika Joshua Onyeka

Public Health M.Sc. student @ Hamburg University of Applied Sciences
Joshua joined Thorn Lab as a student assistant. He is a Public Health practitioner, holds a bachelor's degree in Public Health and is currently enrolled at Hamburg University of Applied Sciences for his MPH. He has helped in implementing some vaccination programmes to improve immunisation coverage and training of immunisation frontline health workers. For the […]
More about this author

Katharina Hoffmann

Molecular Biology M.Sc. student @ Institut für Nanostruktur und Festkörperphysik, Universität Hamburg
Katharina worked as a student assistant at Thorn Lab. Normally, she studies molecular biology at the University of Hamburg. In her master's thesis, which was put on hold by Corona, she is working on the interruption of bacterial communication. Since the lockdown, she has been digging around in databases and analyzing sequences. She never thought […]
More about this author

Nicole Dörfel

Media Designer @
Nicole Dörfel ensures that we and our work are looking good! She is the illustrator, media designer and the artistic soul of the Task Force. She works her magic both in print and digitally—her focus is general media design. In the Task Force, she is mainly responsible for graphics, photo editing, design of all our […]
More about this author

Pairoh Seeliger

Administration Assistant @ Institute for Nanostructure and Solid-State Physics, Hamburg University
Pairoh Seeliger is the admin wizard of the Task Force. She takes care of media requests, handles any logistical issues that come up and makes sure our science doesn’t sound too complicated in our German outreach efforts. She self-describes as "a jack of all trades with a University education in German studies and business administration, […]
More about this author

Oliver Kippes

Biochemistry B.Sc. Student @ Rudolf Virchow Center, Würzburg University
Oli is studying biochemistry (B.Sc) and has completed a training as an IT specialist prior to his studies. With the combined knowledge of his studies and training, he helps maintaining the structural database, programs applications for it and supports the team in literature research. In spite of his study, structural biology was still a new […]
More about this author

Luise Kandler

Biochemistry B.Sc. Student @ Rudolf-Virchow Center, Würzburg University
Luise is a B.Sc. student in biochemistry at the University of Würzburg and joined the Task Force during the first Corona lockdown. She did her bachelor's thesis with the Thorn Lab, where she learned programming with Python and worked on the implementation of a GUI for our machine learning tool HARUSPEX in Coot. In the […]
More about this author

Ferdinand Kirsten

Biochemistry B.Sc. Student @ Rudolf Virchow Center, Würzburg University
Ferdinand did his bachelor's thesis at Thorn Lab on solvent exchange and interactions in macromolecular crystallography. Still new to the world of crystallography and structural refinement, he tries to help wherever he can, with a main focus on literature and genome research as well as structural refinement with Coot. Even if he's more of the […]
More about this author

Kristopher Nolte

Biochemistry B.Sc. Student @ Rudolf-Virchow Center, Würzburg University
Kristopher joined Thorn Lab as part of his bachelor thesis. In this thesis he refined aspects of the diagnostic tool for graphical X-Ray data analysis (AUSPEX) with the help of machine learning. But since the corona crisis halted all our lives, he contributes to the Task Force by using his knowledge of bioinformatics and programming […]
More about this author

Erik Nebelung

Nanoscience M.Sc. Student @ Institute for Nanostructure and Solid-State Physics, Hamburg University
Erik is studying nanoscience with a focus on biochemical methods and applications. From August 2020 till January 2021 he pursued his studies at the iNano institute in Aarhus, before starting his master's thesis back in Hamburg. He had his first taste of protein crystallization during his bachelor's thesis work and this sparked his interest in […]
More about this author

Toyin Akinselure

Nanoscience M.Sc. Student @ Institute for Nanostructure and Solid-State Physics, Hamburg University
Toyin ist a microbiologist and presently an M.Sc. student in nanoscience with a focus on nanobiology and nanochemistry. She is interested in scientific research especially in protein chemistry and drug discovery. In the previous autumn and winter, she interned with two research projects, one in drug discovery and the other in protein structure. She found […]
More about this author

Lea von Soosten

Physics M.Sc. Student @ Institute for Nanostructure and Solid-State Physics, Hamburg University
Lea is a M.Sc. physics student with a great interest in everything related to biology. Even though she comes from a different field, she joined the team to expand her knowledge in biochemistry and help the Task Force with a main focus on literature research. Also, she loves drawing!
More about this author

Sabrina Stäb

Biotechnology M.Sc. Student @ Institute for Nanostructure and Solid-State Physics, Hamburg University
Sabrina is studying biochemistry (M.Sc.) and works as a research assistant for the Thorn Lab and the CSTF. During her bachelor thesis on "Crystallization and Structure Solution of High-Quality Structures for MAD Experiments", she was able to gain a lot of experience in the field of crystallography and now brings this experience to the project. […]
More about this author

Alexander Matthew Payne

Chemical Biology Ph.D. Student @ Chodera Lab, Memorial Sloan Kettering Center for Cancer Research, New York, U.S.
Alex is a Ph.D. student interested in understanding how proteins move! He has recently joined the labs of John Chodera and Richard Hite to work on a joint project involving molecular dynamics and Cryo-EM. His goal is to generate conformational ensembles from Cryo-EM data and simulate the ensemble using massive scale molecular dynamics via Folding@Home. […]
More about this author

Maximilian Edich

Bioinformatics Ph.D. Student @ Institute for Nanostructure and Solid-State Physics, Hamburg University
Max studied bioinformatics and genome research in Bielefeld and joined the CSTF as a Ph.D. student in 2021. Previously, his focus was on molecular modeling. Now, he works on the so-called R-factor gap. He already learned what it is like to be part of a young, scientific team as a member of the iGEM contest […]
More about this author

Agnel Praveen Joseph

Computational Scientist @ Science and Technology Facilities Council, UK
Dr. Agnel Praveen works as a computational scientist in the CCP-EM team at the Science and Technology Facilities Council, UK. He is interested in approaches to interpret and validate maps and atomic models derived from Cryo-EM data and looks also into computational methods for the interpretation of Cryo-ET data. In collaboration with five other sites […]
More about this author

Dale Tronrud

Research Scientist @
Dale Tronrud has both solved protein crystal structures and developed methods and software for the optimization of macromolecular models against X-ray data and known chemical structural information. He has had a long-standing interest in enzyme:inhibitor complexes and photosynthetic proteins, focusing on the Fenna-Matthews-Olson protein. In addition, he has also been involved in the validation and […]
More about this author

Sam Horrell

Beamline Scientist @ Diamond Light Source, Oxfordshire, UK
Sam is a structural biologist working on method development around structural biology at Diamond Light Source, in particular for ways of better understanding how enzymes function through the production of structural movies. Sam is working through deposited structures related to SARS-CoV and SARS-CoV-2 with a view to providing the most accurate protein structures possible for […]
More about this author

Cameron Fyfe

Postdoctoral Research Associate @ Micalis Institute, INRAE, Paris, France
Cameron is a structural biologist who has worked extensively on proteins from microorganisms. With many years of experience in the pharmaceutical industry and in structural biology research, he joined the Task Force to contribute his skills to improve existing models for drug development. He is currently researching Radical SAM enzymes at INRAE. When not in […]
More about this author

Tristan Croll

Postdoctoral Research Associate @ Cambridge Institute for Medical Research, University of Cambridge
Tristan is a specialist in the modelling of atomic structures into low-resolution crystallographic and cryo-EM density, and developer of the model-building package ISOLDE. His focus in the project is on correcting the various errors in geometry and/or chemical identity that tend to occur in less well-resolved regions, with the overall aim of bringing the standards […]
More about this author

Gianluca Santoni

Serial Crystallography Data Scientist @ European Synchrotron Radiation Facility, Grenoble, France
Gianluca is an expert in protein crystallography data collection and analysis. After a PhD in structure-based drug design, he has worked as a postdoc on the beamline ID23-1 at the European Synchrotron Radiation Facility (ESRF) and has developed the SSX data analysis software ccCluster. His current interests are the optimization of data collection strategies for […]
More about this author

Yunyun Gao

Postdoctoral Research Associate in the AUSPEX Project @ Institute for Nanostructure and Solid-State Physics, Hamburg University
Yunyun is a method developer for strategies of analysing data from biomacromolecules. Before joining the Thorn group, he had been working on SAXS/WAXS of polymers and proteins. He is interested in improving objectivity and reliability of data analysis. Yunyun is currently extending the functionality of AUSPEX. He is the repository manager and AUSPEX handler for […]
More about this author

Johannes Kaub

Scientific Coordinator @ Institute for Nanostructure and Solid-State Physics, Hamburg University
Johannes Kaub studied chemistry at RWTH Aachen, with a focus on solid-state physical chemistry, before serving as a scientific employee at the Max Planck Instiute for the Structure and Dynamics of Matter. He supports the Coronavirus Structural Task Force as a scientific coordinator with his organizing ability and his talent for solving problems. Other than […]
More about this author

Andrea Thorn

Group Leader @ Institute for Nanostructure and Solid-State Physics, Hamburg University
Andrea is a specialist for crystallography and Cryo-EM structure solution, having contributed to programs like SHELX, ANODE and (a little bit) to PHASER in the past. Her group develops the diffraction diagnostics tool AUSPEX, a neural network for secondary structure annotation of Cryo-EM maps (HARUSPEX) and enables other scientists to solve problem structures. Andrea is […]
More about this author

Leave a Reply

Your email address will not be published. Required fields are marked *