Vaccination Safety Management

April 1, 2021
Ezika Joshua Onyeka

Introduction:

Vaccination is a great means of achieving public protection against diseases. The main goal of any vaccine manufacturer is to produce a vaccine that will be safe and effective in preventing the target disease. Before any vaccine is rolled out for mass vaccination or campaign, it must have met the required rigorous scientific and ethical standards, ensuring safety, efficacy, purity, and potency (1). A vaccine is considered safe and effective when used correctly, leading to a successful vaccination campaign. However, from the general health point-of-view, vaccines are not risk-free and there are occasionally Adverse Events Following Immunization (AEFI) (2). The risk is of course outweighed by the benefits of vaccines as they protect us from vaccine-preventable diseases. Here, I will discuss the safety measures vaccination undergoes for it to be a success.

What does vaccination mean?

Vaccination is a simple, safe, and effective way of protecting people against harmful diseases, before they come into contact with them (3).

What is vaccination safety?

This entails the absence of preventable harm to the recipient, health care worker and the society at large during and after vaccination.

What are the stages of vaccine development before vaccination?

Vaccine development starts with the assessment of public health needs and priorities which progresses to scientific research on the target disease, pre-clinical and eventually, clinical trials (4). The following are the stages of vaccine development:

Research stage; involves the identification and isolation of the target antigen.

Pre-clinical stage; the potential vaccine is being tested on cells and animals after a careful examination.

Clinical trials (three phases); if the vaccine is safe in animals, it will then be suggested to be tested in human volunteers.

The clinical trials are usually in three phases.

  • Phase 1; trials involve a smaller number of people of about twenty to hundred healthy volunteers, this is designed to test and determine vaccine safety, doses, immune response (immunogenicity) and route of administration.
  • Phase 2; starts after the successful completion of phase 1. This may involve hundreds of volunteers with double-blind (the researchers and the research volunteers do not know if the research volunteers are in the vaccine group or the placebo group, to prevent bias) studies with a placebo-control group. It further tests safety and the amount of dose to provoke an immune response.
  • Phase 3; hundreds to thousands of volunteers are given the vaccine in comparison with the placebo group. It involves a randomized double or single-blind (the research volunteers do not know whether they are in the vaccine group or the placebo group, to prevent bias), placebo-controlled group (inactive substance, sometimes another type of vaccine is given to the research volunteers) to evaluate more on the vaccine safety, efficacy and side effects.

This is then followed by regulatory review, approval and manufacturing. After the product is rolled out, a surveillance system is established for continuous monitoring of the vaccine, immunization coverage and possible adverse reactions for risk-management (4,5). COVID-19 vaccines underwent these processes as well.

Who is responsible for vaccine approval?

Following scientific, ethical and international standards, approval on clinical trials, results, and licensing are done by the national and regional regulatory authorities in the countries where vaccines are manufactured (6). This must be guided by principles of fairness, transparency and accountability to ensure safety.

How are vaccines stored and handled?

Cold chain, sometimes referred to as “Supply chain” is the system used for storing vaccines in good condition. In the cold chain system, the levels designed to keep vaccines within recommended temperature ranges, from the point of manufacture to the point of administration differ. This means that the storage temperature range for every level may differ provided the potency of the vaccine is maintained. Vaccines can be sensitive to freezing or light but all vaccines are sensitive to heat. This is what the Vaccine Vial Monitor (VVM) on the vial helps to monitor. VVM is a chemical indicator label attached to the vaccine container (vial and ampoule) by the vaccine manufacturer which helps to monitor the temperature of a vaccine and ensure that no heat-damaged vaccine is administered. If the colour of the inner square is the same colour or darker than the outer circle, the vaccine has been exposed to too much heat and should be discarded. All vaccines must be discarded after the expiry date or six hours of opening. The recommended diluent is used for the reconstitution of freeze-dried vaccines before use.

Are some vaccines made for some persons?

Vaccination is carried out based on dosage, age group or sex. This is because there is a specific group of people used during the clinical trials who will determine the first target group to be vaccinated when the vaccine is rolled out. Notwithstanding, other group of people may still receive the vaccine as the vaccination goes on once safety is ensured. Please always check the fact sheet for any vaccine you wish to receive on the manufacturer`s website for such updates.

cdc-qIR77o5woJ8-unsplash
Figure 1: A good vaccination session. Photo by CDC on Unsplash

How are injection devices disposed of after a vaccination session?

Injection equipment can pose danger to the environment if not well disposed of, leading to environmental pollution. When needles and syringes are thrown into the bodies of water, they cause contamination to the environment and injury to the wildlife. Safety boxes are sharps waste containers that needles cannot penetrate, they are used to keep the used needles and syringes temporarily during a vaccination session. It is disposed of immediately after vaccination sessions to maintain safety. Appropriate use of a safety box is necessary to avoid needle-stick injuries (when the skin is pricked by needles accidentally) to the health care worker or other individuals. Special incinerators are used to burn these needles and syringes to minimise the toxic release into the environment.

Vaccination Safety Management 1
Figure 2: Unsafe disposal of used needles and syringes (Sharps).
Source: Adobe Stock

Vaccination Safety Management 2
Figure 3: Safe disposal of used syringes and needles (Sharps) in a safety box.
Source: Adobe Stock

What is Adverse Events Following Immunization (AEFI)?

This is any untoward medical occurrence which follows immunization and which does not necessarily have a causal relationship with the usage of the vaccine. AEFI can be vaccine product-related, vaccine quality defect-related, vaccination error- related, vaccination anxiety-related or a coincidental event.

Some minor vaccine reactions-AEFIs, you need to know:

  • Pain, redness, swelling at the site of injection
  • Irritability, malaise
  • Slight fever
  • Slight headache
  • Mild muscle pain
  • Loss of appetite
  • Joint pain
  • Lymphadenopathy (swollen lymph nodes, it can be under the armpit in the same arm of injection, etc.)

Some rare and severe vaccine reactions-AEFIs, you need to know:

  • Febrile seizures (convulsions that occur usually in children as a result of high body temperature)
  • Thrombocytopenia (low platelet count in the blood which usually helps to stop bleeding when one gets injured)
  • Anaphylaxis (severe allergic reaction)
  • Sterile abscess (swelling in the injection site usually occurs when an injection is not completely absorbed into the skin which makes pus build up in the tissue)
  • Difficulty in breathing
  • Encephalopathy (damage to the brain, affecting one`s mental state)
  • Persistent inconsolable crying or screaming

Severe AEFIs are rare, however, every AEFI must be reported to the health care worker or appropriate authority.

Before receiving any vaccine, please discuss with the vaccination provider about all of your medical conditions such as:

  • past and present allergic reactions
  • current fever
  • if you are taking blood thinner medications
  • if you have any bleeding disorder
  • if you are immunocompromised
  • if you are on a medication that affects your immune system
  • if you are pregnant or plan to become pregnant very soon
  • if you are breastfeeding
  • your previous vaccination history (7,8).

What does surveillance (pharmacovigilance) mean?

Pharmacovigilance is a part of the surveillance system designed to detect, assess, understand, respond and preventing adverse drug reactions, including reactions to vaccines-AEFIs in every country. Both national and international levels have surveillance systems for good monitoring and immediate actions in response to AEFIs. This helps to ensure the safety of vaccines even as vaccination is ongoing (2).

Conclusion:

Vaccines follow many rigorous scientific processes before and after being approved to ensure safety and effectiveness. Vaccination is safe when no harm is posed to the patient, health worker and society (avoiding pollution and injuries through proper disposal of injection wastes). If a vaccine requires a subsequent dose, you must receive the same type of vaccine as the initial dose. Always keep your vaccination card for the next visit and follow your vaccination schedule. It is encouraged to not go for a second dose of vaccine if you had a serious allergic reaction or side effect after the first dose. Discuss your medical history with the vaccination provider before taking a vaccine. Please wait for some time after receiving your vaccine for a little safety monitoring before going home. Vaccines work!

References:

1.         Centers for Disease Control and Prevention. U.S. Vaccine Safety - Overview, History, and How It Works | CDC [Internet]. 2020 [cited 2021 Mar 4]. Available from: https://www.cdc.gov/vaccinesafety/ensuringsafety/history/index.html

2.         World Health Organization. WHO Vaccine Safety Basics [Internet]. [cited 2021 Mar 3]. Available from: https://vaccine-safety-training.org/overview-and-outcomes-1.html

3.         Vaccination_World Health Organization. Vaccines and immunization: What is vaccination? [Internet]. [cited 2021 Mar 3]. Available from: https://www.who.int/news-room/q-a-detail/vaccines-and-immunization-what-is-vaccination

4.         Centers for Disease Control and Prevention. Ensuring Vaccine Safety | CDC [Internet]. 2020 [cited 2021 Mar 3]. Available from: https://www.cdc.gov/vaccinesafety/ensuringsafety/index.html

5.         Mitchell VS, Philipose NM, Sanford JP. Stages of Vaccine Development_Institute of Medicine (US) Committee on the Children’s Vaccine Initiative: Planning Alternative [Internet]. The Children’s Vaccine Initiative: Achieving the Vision. National Academies Press (US); 1993 [cited 2021 Mar 3]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK236428/

6.         World Health Organization_ Vaccine Safety. Vaccines and immunization: Vaccine safety [Internet]. [cited 2021 Mar 3]. Available from: https://www.who.int/news-room/q-a-detail/vaccines-and-immunization-vaccine-safety

7.         Moderna. Emergency Use Authorization (EUA) | Moderna COVID-19 Vaccine [Internet]. https://www.modernatx.com/. [cited 2021 Mar 16]. Available from: https://www.modernatx.com/covid19vaccine-eua/

8.         Pfizer-BioNTech. Pfizer-BioNTech COVID-19 Vaccine | cvdvaccine.com [Internet]. [cited 2021 Mar 16]. Available from: https://www.cvdvaccine.com

Corinna the Corona Cactus

@
Corinna works as an outreach person for all plant-related business and as a mascot. She gathered previous experience in the garden center, and even though she can be a bit spiky, she likes to cuddle and lie in the sun.
More about this author

Helen Ginn

Senior Research Scientist @ Diamond Light Source, Oxfordshire, UK
Dr Helen Ginn is a senior research scientist at Diamond Light Source in the UK and a computational methods developer in structural biology. She is currently working on Representation of Protein Entities (RoPE) for structural biologists to interpret subtle conformational changes in dynamic protein systems. She has developed Vagabond for torsion angle-driven model refinement and […]
More about this author

Nick Pearce

Assistant Professor @ SciLifeLab DDLS Fellow
Nick obtained his undergraduate degree in Physics from the University of Oxford in 2012, and then his PhD in Systems Approaches to Biomedical Sciences in 2016. He moved to Utrecht in the Netherlands in 2017 to work with Piet Gros, where he obtained an EMBO long-term fellowship and worked on analysing disorder in macromolecular structures. […]
More about this author

Mathias Schmidt

Molecular Life Sciences M.Sc. Student @ Hamburg University
Mathias is currently doing his Master's degree in Molecular Life Sciences at the University of Hamburg and has been an auxiliary scientist in the Corona Structural Taskforce since March 2022. There he is working on the question of the origin of SARS-CoV-2. His undergraduate research focuses on the development of synthetic molecular mechanisms to regulate […]
More about this author

David Briggs

Principal Laboratory Research Scientist @ Francis Crick Institute in London, UK
David Briggs is a Principal Laboratory Research Scientist in the Signalling and Structural Biology lab at the Francis Crick Institute in London, UK. A crystallographer by training, his work focuses on the biophysical and structural characterisation of human extracellular proteins involved in the synapse, which have important ramifications in both psychiatric and neurodegenerative disorders. He […]
More about this author

Lisa Schmidt

Web Developer and Illustrator @ Mullana
Lisa Schmidt is a freelance illustrator who studied Multimedia and Communication (BA) in Ansbach, Germany. Her work is focused on visualising topics around science and technology. She joined the Coronavirus Structural Task Force as media designer, where she does web design, 3D rendering for scientific illustrations and outreach work.
More about this author

Philip Wehling

Nanosciences M.Sc. Student @ Institute for Nanostructure and Solid-State Physics, Hamburg University
Philip has long had an enthusiasm for biological processes which is paired with an analytical understanding of the world. After having worked for a long time as a registered nurse in various fields, he first studied mathematics and finally nanosciences. During a lecture series in preparation for a bachelor's thesis, he came into contact with […]
More about this author

Binisha Karki

Postdoctoral Research Associate @ BioNTech SE
Binisha works as a research associate at BioNTech where she works on the development of COVID-19 vaccine and cancer immunotherapies. She graduated as a Molecular Biology major from Southeastern Louisiana University in May 2019. Post-graduation she worked as a research technician in the Chodera Lab performing biophysical measurements of model protein-ligand systems for computational chemistry […]
More about this author

Binisha Karki

Wissenschaftliche Mitarbeiterin @ BioNTech SE
Binisha ist als wissenschaftliche Mitarbeiterin bei BioNTech angestellt und arbeitet an der Entwicklung von Impfstoffen gegen COVID-19 sowie Krebsimmuntherapien. Sie beendete ihr Studium der Molekularbiologie an der Southeastern Louisiana University im Mai 2019. Anschließend arbeitete sie als Forschungstechnikerin im Chodera-Lab, wo sie biophysikalische Messungen an Modellen von Protein-Liganden-Systeme für computerchemische Benchmarks durchführte.
More about this author

Hauke Hillen

Assistant Professor at the University Medical Center Göttingen & Group Leader at the MPI for Biophysical Chemistry @ University Medical Center Göttingen
Hauke ist Biochemiker und Strukturbiologe. Mit seinem Forschungsteam untersucht er mittels Röntgenkristallografie und Kryo-Elektronenmikroskopie die Struktur und Funktion von molekularen Maschinen, die für die Genexpression in eukaryotischen Zellen verantwortlich sind. Er interessiert sich dabei besonders dafür wie genetisches Material außerhalb des Zellkerns exprimiert wird, zum Beispiel in menschlichen Mitochondrien oder durch Viren im Zytoplasma.
More about this author

Richardson Lab

Richardson Lab @ Duke University, Durham, North Carolina, USA
The long-term goal of the Richardson lab is to contribute to a deeper understanding of the 3D structures of proteins and RNA, including their description, determinants, folding, evolution, and control. Their approaches include structural bioinformatics, macromolecular crystallography, molecular graphics, analysis of structures, and methods development, currently focussed on the improvement of structural accuracy. In this […]
More about this author

Holger Theymann

Agile Leadership Coach @ mehr-Freu.de GmbH
Holger keeps websites running. He makes data from scientific databases appear in nice tables. He also has an eye on keeping the sites fast, safe and reliable. His experience as a software developer, systems architect, agile project manager and coach enabled the Task Force to get the whole process well organized and he even taught […]
More about this author

Florens Fischer

Biology M.Sc. Student @ Rudolf Virchow Center, Würzburg University
Florens is studying biology (M.Sc.) and worked in the Task Force as a student assistant. He has focused on bioinformatics and supports the work on automation of scripts and structuralization of big data with machine learning. He also supported the team in other areas, such as scientific research.
More about this author

Ezika Joshua Onyeka

Public Health M.Sc. student @ Hamburg University of Applied Sciences
Joshua joined Thorn Lab as a student assistant. He is a Public Health practitioner, holds a bachelor's degree in Public Health and is currently enrolled at Hamburg University of Applied Sciences for his MPH. He has helped in implementing some vaccination programmes to improve immunisation coverage and training of immunisation frontline health workers. For the […]
More about this author

Katharina Hoffmann

Molecular Biology M.Sc. student @ Institut für Nanostruktur und Festkörperphysik, Universität Hamburg
Katharina worked as a student assistant at Thorn Lab. Normally, she studies molecular biology at the University of Hamburg. In her master's thesis, which was put on hold by Corona, she is working on the interruption of bacterial communication. Since the lockdown, she has been digging around in databases and analyzing sequences. She never thought […]
More about this author

Nicole Dörfel

Media Designer @
Nicole Dörfel ensures that we and our work are looking good! She is the illustrator, media designer and the artistic soul of the Task Force. She works her magic both in print and digitally—her focus is general media design. In the Task Force, she is mainly responsible for graphics, photo editing, design of all our […]
More about this author

Pairoh Seeliger

Administration Assistant @ Institute for Nanostructure and Solid-State Physics, Hamburg University
Pairoh Seeliger is the admin wizard of the Task Force. She takes care of media requests, handles any logistical issues that come up and makes sure our science doesn’t sound too complicated in our German outreach efforts. She self-describes as "a jack of all trades with a University education in German studies and business administration, […]
More about this author

Oliver Kippes

Biochemistry B.Sc. Student @ Rudolf Virchow Center, Würzburg University
Oli is studying biochemistry (B.Sc) and has completed a training as an IT specialist prior to his studies. With the combined knowledge of his studies and training, he helps maintaining the structural database, programs applications for it and supports the team in literature research. In spite of his study, structural biology was still a new […]
More about this author

Luise Kandler

Biochemistry B.Sc. Student @ Rudolf-Virchow Center, Würzburg University
Luise is a B.Sc. student in biochemistry at the University of Würzburg and joined the Task Force during the first Corona lockdown. She did her bachelor's thesis with the Thorn Lab, where she learned programming with Python and worked on the implementation of a GUI for our machine learning tool HARUSPEX in Coot. In the […]
More about this author

Ferdinand Kirsten

Biochemistry B.Sc. Student @ Rudolf Virchow Center, Würzburg University
Ferdinand did his bachelor's thesis at Thorn Lab on solvent exchange and interactions in macromolecular crystallography. Still new to the world of crystallography and structural refinement, he tries to help wherever he can, with a main focus on literature and genome research as well as structural refinement with Coot. Even if he's more of the […]
More about this author

Kristopher Nolte

Biochemistry B.Sc. Student @ Rudolf-Virchow Center, Würzburg University
Kristopher joined Thorn Lab as part of his bachelor thesis. In this thesis he refined aspects of the diagnostic tool for graphical X-Ray data analysis (AUSPEX) with the help of machine learning. But since the corona crisis halted all our lives, he contributes to the Task Force by using his knowledge of bioinformatics and programming […]
More about this author

Erik Nebelung

Nanoscience M.Sc. Student @ Institute for Nanostructure and Solid-State Physics, Hamburg University
Erik is studying nanoscience with a focus on biochemical methods and applications. From August 2020 till January 2021 he pursued his studies at the iNano institute in Aarhus, before starting his master's thesis back in Hamburg. He had his first taste of protein crystallization during his bachelor's thesis work and this sparked his interest in […]
More about this author

Toyin Akinselure

Nanoscience M.Sc. Student @ Institute for Nanostructure and Solid-State Physics, Hamburg University
Toyin ist a microbiologist and presently an M.Sc. student in nanoscience with a focus on nanobiology and nanochemistry. She is interested in scientific research especially in protein chemistry and drug discovery. In the previous autumn and winter, she interned with two research projects, one in drug discovery and the other in protein structure. She found […]
More about this author

Lea von Soosten

Physics M.Sc. Student @ Institute for Nanostructure and Solid-State Physics, Hamburg University
Lea is a M.Sc. physics student with a great interest in everything related to biology. Even though she comes from a different field, she joined the team to expand her knowledge in biochemistry and help the Task Force with a main focus on literature research. Also, she loves drawing!
More about this author

Sabrina Stäb

Biotechnology M.Sc. Student @ Institute for Nanostructure and Solid-State Physics, Hamburg University
Sabrina is studying biochemistry (M.Sc.) and works as a research assistant for the Thorn Lab and the CSTF. During her bachelor thesis on "Crystallization and Structure Solution of High-Quality Structures for MAD Experiments", she was able to gain a lot of experience in the field of crystallography and now brings this experience to the project. […]
More about this author

Alexander Matthew Payne

Chemical Biology Ph.D. Student @ Chodera Lab, Memorial Sloan Kettering Center for Cancer Research, New York, U.S.
Alex is a Ph.D. student interested in understanding how proteins move! He has recently joined the labs of John Chodera and Richard Hite to work on a joint project involving molecular dynamics and Cryo-EM. His goal is to generate conformational ensembles from Cryo-EM data and simulate the ensemble using massive scale molecular dynamics via Folding@Home. […]
More about this author

Maximilian Edich

Bioinformatics Ph.D. Student @ Institute for Nanostructure and Solid-State Physics, Hamburg University
Max studied bioinformatics and genome research in Bielefeld and joined the CSTF as a Ph.D. student in 2021. Previously, his focus was on molecular modeling. Now, he works on the so-called R-factor gap. He already learned what it is like to be part of a young, scientific team as a member of the iGEM contest […]
More about this author

Agnel Praveen Joseph

Computational Scientist @ Science and Technology Facilities Council, UK
Dr. Agnel Praveen works as a computational scientist in the CCP-EM team at the Science and Technology Facilities Council, UK. He is interested in approaches to interpret and validate maps and atomic models derived from Cryo-EM data and looks also into computational methods for the interpretation of Cryo-ET data. In collaboration with five other sites […]
More about this author

Dale Tronrud

Research Scientist @
Dale Tronrud has both solved protein crystal structures and developed methods and software for the optimization of macromolecular models against X-ray data and known chemical structural information. He has had a long-standing interest in enzyme:inhibitor complexes and photosynthetic proteins, focusing on the Fenna-Matthews-Olson protein. In addition, he has also been involved in the validation and […]
More about this author

Sam Horrell

Beamline Scientist @ Diamond Light Source, Oxfordshire, UK
Sam is a structural biologist working on method development around structural biology at Diamond Light Source, in particular for ways of better understanding how enzymes function through the production of structural movies. Sam is working through deposited structures related to SARS-CoV and SARS-CoV-2 with a view to providing the most accurate protein structures possible for […]
More about this author

Cameron Fyfe

Postdoctoral Research Associate @ Micalis Institute, INRAE, Paris, France
Cameron is a structural biologist who has worked extensively on proteins from microorganisms. With many years of experience in the pharmaceutical industry and in structural biology research, he joined the Task Force to contribute his skills to improve existing models for drug development. He is currently researching Radical SAM enzymes at INRAE. When not in […]
More about this author

Tristan Croll

Postdoctoral Research Associate @ Cambridge Institute for Medical Research, University of Cambridge
Tristan is a specialist in the modelling of atomic structures into low-resolution crystallographic and cryo-EM density, and developer of the model-building package ISOLDE. His focus in the project is on correcting the various errors in geometry and/or chemical identity that tend to occur in less well-resolved regions, with the overall aim of bringing the standards […]
More about this author

Gianluca Santoni

Serial Crystallography Data Scientist @ European Synchrotron Radiation Facility, Grenoble, France
Gianluca is an expert in protein crystallography data collection and analysis. After a PhD in structure-based drug design, he has worked as a postdoc on the beamline ID23-1 at the European Synchrotron Radiation Facility (ESRF) and has developed the SSX data analysis software ccCluster. His current interests are the optimization of data collection strategies for […]
More about this author

Yunyun Gao

Postdoctoral Research Associate in the AUSPEX Project @ Institute for Nanostructure and Solid-State Physics, Hamburg University
Yunyun is a method developer for strategies of analysing data from biomacromolecules. Before joining the Thorn group, he had been working on SAXS/WAXS of polymers and proteins. He is interested in improving objectivity and reliability of data analysis. Yunyun is currently extending the functionality of AUSPEX. He is the repository manager and AUSPEX handler for […]
More about this author

Johannes Kaub

Scientific Coordinator @ Institute for Nanostructure and Solid-State Physics, Hamburg University
Johannes Kaub studied chemistry at RWTH Aachen, with a focus on solid-state physical chemistry, before serving as a scientific employee at the Max Planck Instiute for the Structure and Dynamics of Matter. He supports the Coronavirus Structural Task Force as a scientific coordinator with his organizing ability and his talent for solving problems. Other than […]
More about this author

Andrea Thorn

Group Leader @ Institute for Nanostructure and Solid-State Physics, Hamburg University
Andrea is a specialist for crystallography and Cryo-EM structure solution, having contributed to programs like SHELX, ANODE and (a little bit) to PHASER in the past. Her group develops the diffraction diagnostics tool AUSPEX, a neural network for secondary structure annotation of Cryo-EM maps (HARUSPEX) and enables other scientists to solve problem structures. Andrea is […]
More about this author

Leave a Reply

Your email address will not be published. Required fields are marked *

cross